Fractional Chern Insulators and Competing States in a Twisted MoTe$_2$ Lattice Model

ArXiv 2505.06354 (2025)

Authors:

Yuchi He, SH Simon, SA Parameswaran

Paired Parton Trial States for the Superfluid-Fractional Chern Insulator Transition

ArXiv preprint

Authors:

Tevž Lotrič and Steven H. Simon

Abstract:

We consider a model of hard-core bosons on a lattice, half-filling a Chern band such that the system has a continuous transition between a fractional Chern insulator (FCI) and a superfluid state (SF) depending on the bandwidth to bandspacing ratio. We construct a parton-inspired trial wavefunction ansatz for the ground states that has remarkably high overlap with exact diagonalization in both phases and throughout the phase transition. Our ansatz is stable to adding some bosonic interactions beyond the on-site hard core constraint. We confirm that the transition is well described by a projective translation symmetry-protected multiple parton band gap closure, as has been previously predicted. However, unlike prior work, we find that our wavefunctions require anomalous (BCS-like) parton correlations to describe the phase transition and SF phase accurately.

Slow measurement-only dynamics of entanglement in Pauli subsystem codes

Physical Review B (condensed matter and materials physics) American Physical Society 111 (2025) 144308

Authors:

Benedikt Placke, Siddharth Ashok Parameswaran

Abstract:

We study the non-unitary dynamics of a class of quantum circuits based on stochastically measuring check operators of subsystem quantum error-correcting codes, such as the Bacon-Shor code and its various generalizations. Our focus is on how properties of the underlying code are imprinted onto the measurement-only dynamics. We find that in a large class of codes with nonlocal stabilizer generators, at late times there is generically a nonlocal contribution to the subsystem entanglement entropy which scales with the subsystem size. The nonlocal stabilizer generators can also induce slow dynamics, since depending on the rate of competing measurements the associated degrees of freedom can take exponentially long (in system size) to purify (disentangle from the environment when starting from a mixed state) and to scramble (become entangled with the rest of the system when starting from a product state). Concretely, we consider circuits for which the nonlocal stabilizer generators of the underlying subsystem code take the form of subsystem symmetries. We present a systematic study of the phase diagrams and relevant time scales in two and three spatial dimensions for both Calderbank-Shor-Steane (CSS) and non-CSS codes, focusing in particular on the link between slow measurement-only dynamics and the geometry of the subsystem symmetry. A key finding of our work is that slowly purifying or scrambling degrees of freedom appear to emerge only in codes whose subsystem symmetries are nonlocally generated, a strict subset of those whose symmetries are simply nonlocal. We comment on the link between our results on subsystem codes and the phenomenon of Hilbert-space fragmentation in light of their shared algebraic structure.

Bayesian critical points in classical lattice models

(2025)

Authors:

Adam Nahum, Jesper Lykke Jacobsen

Enhanced Stability and Chaotic Condensates in Multispecies Nonreciprocal Mixtures.

Physical review letters 134:14 (2025) 148301

Authors:

Laya Parkavousi, Navdeep Rana, Ramin Golestanian, Suropriya Saha

Abstract:

Random nonreciprocal interactions between a large number of conserved densities are shown to enhance the stability of the system toward pattern formation. The enhanced stability is an exact result when the number of species approaches infinity and is confirmed numerically by simulations of the multispecies nonreciprocal Cahn-Hilliard model. Furthermore, the diversity in dynamical patterns increases with an increasing number of components, and novel steady states such as pulsating or spatiotemporally chaotic condensates are observed. Our results may help to unravel the mechanisms by which living systems self-organize via metabolism.