Quantum Hall Antidot as a Fractional Coulombmeter
preprint, arXiv:2509.04209
Abstract:
The detection of fractionally charged quasiparticles, which arise in the fractional quantum Hall regime, is of fundamental importance for probing their exotic quantum properties. While electronic interferometers have been central to probe their statistical properties, their interpretation is often complicated by bulk-edge interactions. Antidots, potential hills in the quantum Hall regime, are particularly valuable in this context, as they overcome the geometric limitations of conventional designs and act as controlled impurities within a quantum point contact. Furthermore, antidots allow for quasiparticle charge detection through straightforward conductance measurements, replacing the need for more demanding techniques. In this work, we employ a gate-defined bilayer graphene antidot operating in the Coulomb-dominated regime to study quasiparticle tunneling in both integer and fractional quantum Hall states. We show that the gate-voltage period and the oscillation slope directly reveal the charge of the tunneling quasiparticles, providing a practical method to measure fractional charge in graphene. We report direct measurements of fractional charge, finding q=e/3 at ν=4/3, 5/3 and 7/3, q=2e/3 at ν=2/3 and q=3e/5 at ν=3/5, while at ν=8/3 we observe signatures of both e/3 and 2e/3 tunneling charge. The simplicity and tunability of this design open a pathway to extend antidot-based charge measurements to other van der Waals materials, establishing antidots as a powerful and broadly applicable platform to study the quantum Hall effect.
Hydrodynamic memory and Quincke rotation
Physical Review Fluids American Physical Society (APS) 10:9 (2025) 093701
Active sorting to boundaries in active nematic-passive isotropic fluid mixtures.
Soft Matter (2025)
Abstract:
We use a two-fluid model to study a confined mixture of an active nematic fluid and a passive isotropic fluid. We find that an extensile active fluid preferentially accumulates at a boundary if the anchoring is planar, whereas its boundary concentration decreases for homeotropic anchoring. These tendencies are reversed if the active fluid is contractile. We argue that the sorting results from gradients in the nematic order, and show that the behaviour can be driven by either imposed boundary anchoring or spontaneous anchoring induced by active flows. Our results can be tested by experiments on microtubule-kinesin motor networks, and may be relevant to sorting to the boundary in cell colonies or cancer spheroids.Nonreciprocal Mixtures in Suspension: The Role of Hydrodynamic Interactions
Physical Review Letters American Physical Society (APS) 135:10 (2025) 108301
Abstract:
The collective chasing dynamics of nonreciprocally coupled densities leads to stable traveling waves which can be mapped to a model for emergent flocking. In this Letter, we couple the nonreciprocal Cahn-Hilliard model to a fluid to minimally describe scalar active mixtures in a suspension, with the aim to explore the stability of the waves, i.e., the emergent flock in the presence of self-generated fluid flows. We show that the emergent polarity is linearly unstable to perturbations for a specific sign of the active stress recalling instabilities of orientational order in a fluid. Using numerical simulations, we find, however, that nonreciprocity stabilizes the waves against the linear instability in a large region of the phase space.Classification of spin-12 fermionic quantum spin liquids on the trillium lattice
Physical Review B American Physical Society (APS) 112:10 (2025) 104429