Driven transitions between megastable quantized orbits

Chaos, Solitons & Fractals Elsevier BV 198 (2025) 116549

Authors:

Álvaro G López, Rahil N Valani

Natural protein structures have evolved exceptional robustness to mutations

(2025)

Authors:

Samuel HA Von der Dunk, Kamal HA Dingle, Ard Louis, Berend Snel, Paulien Hogeweg

Effervescence in a binary mixture with nonlinear non-reciprocal interactions

Nature Communications Nature Research 16:1 (2025) 7310

Authors:

Suropriya Saha, Ramin Golestanian

Abstract:

Non-reciprocal interactions between scalar fields that represent the concentrations of two active species are known to break the parity and time-reversal (PT) symmetries of the equilibrium state, as manifested in the emergence of travelling waves. We explore the notion of nonlinear non-reciprocity and consider a model in which the non-reciprocal interactions can depend on the local values of the scalar fields in such a way that the non-reciprocity can change sign. For generic cases where such couplings exist, we observe the emergence of spatiotemporal chaos in the steady-state. We associate this chaotic behaviour with a local restoration of PT symmetry in fluctuating spatial domains, which leads to the coexistence of oscillating densities and phase-separated droplets that are spontaneously created and annihilated. We uncover that this phenomenon, which we denote as effervescence, can exist as a dynamical steady-state in large parts of the parameter space in two different incarnations, as characterised by the presence or absence of an accompanying travelling wave.

Nematic Order from Phase Synchronization of Shape Oscillations

Physical Review Letters American Physical Society (APS) 135:6 (2025) 068101

Authors:

Ioannis Hadjifrangiskou, Sumesh P Thampi, Rahil N Valani

Abstract:

We show that a suspension of noninteracting deformable particles subjected to an oscillatory shear flow leads to development of nematic order that arises from the phenomenon of phase synchronization. The synchronized state corresponds to a unique, stable limit cycle confined in the toroidal state space. The limit cycle exists since, unlike rigid particles, deformable particles can modulate aspect ratio, adjust their tumbling rate, and thus achieve phase synchronization. These synchronized regions emerge as Arnold tongues in the parameter space of the driving amplitude and frequency. Considering the rheological implications of ordering dynamics in soft and active matter, our results motivate oscillatory shear flow experiments with deformable particles.

A roadmap for next-generation nanomotors

Nature Nanotechnology (2025) 1-11

Authors:

Shuqin Chen, Donglei Emma Fan, Peer Fischer, Ambarish Ghosh, Kerstin Göpfrich, Ramin Golestanian, Henry Hess, Xing Ma, Bradley J Nelson, Tania Patiño Padial, Jinyao Tang, Katherine Villa, Wei Wang, Li Zhang, Ayusman Sen, Samuel Sánchez

Abstract:

Since their discovery in 2004, there has been remarkable progress in research on nanomotors, from the elucidation of different propulsion mechanisms to the study of their collective behaviour, culminating in investigations into their applications in biomedicine and environmental remediation. This Perspective reviews this evolution in nanomotor research and discusses the key challenges ahead, including the need for developing advanced characterization techniques, precise motion control, materials innovation, theory and modelling, and translationally feasible in vivo biomedical applications. These challenges highlight the current limitations of synthetic nanomotors and point to exciting future opportunities to revolutionize theranostics and create ‘living’ hybrid systems. We introduce the concept of ‘systems materials’ to encompass interacting functional materials across length scales from molecular to macro. Thus, this Perspective aims to inspire future generations of researchers to advance both fundamental understanding and practical breakthroughs, thereby engineering a paradigm shift in nanomotor research.