3D loop models and the CP(n-1) sigma model.
Phys Rev Lett 107:11 (2011) 110601
Abstract:
Many statistical mechanics problems can be framed in terms of random curves; we consider a class of three-dimensional loop models that are prototypes for such ensembles. The models show transitions between phases with infinite loops and short-loop phases. We map them to CP(n-1) sigma models, where n is the loop fugacity. Using Monte Carlo simulations, we find continuous transitions for n=1, 2, 3, and first order transitions for n≥5. The results are relevant to line defects in random media, as well as to Anderson localization and (2+1)-dimensional quantum magnets.Lévy fluctuations and mixing in dilute suspensions of algae and bacteria.
J R Soc Interface 8:62 (2011) 1314-1331
Abstract:
Swimming micro-organisms rely on effective mixing strategies to achieve efficient nutrient influx. Recent experiments, probing the mixing capability of unicellular biflagellates, revealed that passive tracer particles exhibit anomalous non-Gaussian diffusion when immersed in a dilute suspension of self-motile Chlamydomonas reinhardtii algae. Qualitatively, this observation can be explained by the fact that the algae induce a fluid flow that may occasionally accelerate the colloidal tracers to relatively large velocities. A satisfactory quantitative theory of enhanced mixing in dilute active suspensions, however, is lacking at present. In particular, it is unclear how non-Gaussian signatures in the tracers' position distribution are linked to the self-propulsion mechanism of a micro-organism. Here, we develop a systematic theoretical description of anomalous tracer diffusion in active suspensions, based on a simplified tracer-swimmer interaction model that captures the typical distance scaling of a microswimmer's flow field. We show that the experimentally observed non-Gaussian tails are generic and arise owing to a combination of truncated Lévy statistics for the velocity field and algebraically decaying time correlations in the fluid. Our analytical considerations are illustrated through extensive simulations, implemented on graphics processing units to achieve the large sample sizes required for analysing the tails of the tracer distributions.A random matrix-theoretic approach to handling singular covariance estimates
IEEE Transactions on Information Theory 57:9 (2011) 6256-6271
Abstract:
In many practical situations we would like to estimate the covariance matrix of a set of variables from an insufficient amount of data. More specifically, if we have a set of N independent, identically distributed measurements of an M dimensional random vector the maximum likelihood estimate is the sample covariance matrix. Here we consider the case where N < M such that this estimate is singular (noninvertible) and therefore fundamentally bad. We present a radically new approach to deal with this situation based on the idea of dimensionality reduction through an ensemble of isotropically random unitary matrices. We obtain two estimates cov and invcov which are estimates for the covariance matrix and the inverse covariance matrix respectively. Both estimates retain the original eigenvectors while altering the eigenvalues. We have a closed form analytical expression for cov and invcov in terms of the eigenvector/eigenvalue decomposition of the sample covariance. We motivate the use of invcov through applications to linear estimation, supervised learning, and high-resolution spectral estimation. We also compare the performance of these estimators with other more conventional methods. © 2011 IEEE.3D loop models and the CP(n-1) sigma model.
Physical review letters 107:11 (2011) 110601
Abstract:
Many statistical mechanics problems can be framed in terms of random curves; we consider a class of three-dimensional loop models that are prototypes for such ensembles. The models show transitions between phases with infinite loops and short-loop phases. We map them to CP(n-1) sigma models, where n is the loop fugacity. Using Monte Carlo simulations, we find continuous transitions for n=1, 2, 3, and first order transitions for n≥5. The results are relevant to line defects in random media, as well as to Anderson localization and (2+1)-dimensional quantum magnets.Boson pairing and unusual criticality in a generalized XY model
(2011)