Universal corrections to scaling for block entanglement in spin-1/2 XX chains
(2010)
Resources required for topological quantum factoring
Physical Review A - Atomic, Molecular, and Optical Physics 81:6 (2010)
Abstract:
We consider a hypothetical topological quantum computer composed of either Ising or Fibonacci anyons. For each case, we calculate the time and number of qubits (space) necessary to execute the most computationally expensive step of Shor's algorithm, modular exponentiation. For Ising anyons, we apply Bravyi's distillation method which combines topological and nontopological operations to allow for universal quantum computation. With reasonable restrictions on the physical parameters we find that factoring a 128-bit number requires approximately 103 Fibonacci anyons versus at least 3×109 Ising anyons. Other distillation algorithms could reduce the resources for Ising anyons substantially. © 2010 The American Physical Society.Peptidoglycan architecture can specify division planes in Staphylococcus aureus.
Nat Commun 1 (2010) 26
Abstract:
Division in Staphylococci occurs equatorially and on specific sequentially orthogonal planes in three dimensions, resulting, after incomplete cell separation, in the 'bunch of grapes' cluster organization that defines the genus. The shape of Staphylococci is principally maintained by peptidoglycan. In this study, we use Atomic Force Microscopy (AFM) and fluorescence microscopy with vancomycin labelling to examine purified peptidoglycan architecture and its dynamics in Staphylococcus aureus and correlate these with the cell cycle. At the presumptive septum, cells were found to form a large belt of peptidoglycan in the division plane before the centripetal formation of the septal disc; this often had a 'piecrust' texture. After division, the structures remain as orthogonal ribs, encoding the location of past division planes in the cell wall. We propose that this epigenetic information is used to enable S. aureus to divide in sequentially orthogonal planes, explaining how a spherical organism can maintain division plane localization with fidelity over many generations.Disorder in a quantum spin liquid: flux binding and local moment formation.
Phys Rev Lett 104:23 (2010) 237203
Abstract:
We study the consequences of disorder in the Kitaev honeycomb model, considering both site dilution and exchange randomness. We show that a single vacancy binds a flux and induces a local moment. This moment is polarized by an applied field h: in the gapless phase, for small h the local susceptibility diverges as χ(h)∼ln(1/h); for a pair of nearby vacancies on the same sublattice, this even increases to χ(h)∼1/(h[ln(1/h)](3/2)). By contrast, weak exchange randomness does not qualitatively alter the susceptibility but has its signature in the heat capacity, which in the gapless phase is power law in temperature with an exponent dependent on disorder strength.Effect of the Heterogeneity of Metamaterials on Casimir-Lifshitz Interaction
ArXiv 1006.1369 (2010)