Sustained Enzymatic Activity and Flow in Crowded Protein Droplets

Authors:

Andrea Testa, Mirco Dindo, Aleksander A Rebane, Babak Nasouri, Robert W Style, Ramin Golestanian, Eric R Dufresne, Paola Laurino

Symmetry-breaking in drop bouncing on curved surfaces

Nature Communications Nature Publishing Group: Nature Communications

Authors:

JM Yeomans, M Andrew

TEDx talk Jan 20, 2015

Abstract:

https://www.youtube.com/watch?v=smX2lSyi2js Outreach with live audience of over 1800 people.

TEDx video

Authors:

S Simon, SH Simon

Abstract:

https://www.youtube.com/watch?v=smX2lSyi2js TEDx video produced 2015

The 2019 Motile Active Matter Roadmap

Journal of Physics: Condensed Matter IOP Publishing

Authors:

Gerhard Gompper, Roland G Winkler, Thomas Speck, Alexandre Solon, Cesare Nardini, Fernando Peruani, Hartmut Loewen, Ramin Golestanian, U Benjamin Kaupp, Luis Alvarez, Thomas Kioerboe, Eric Lauga, Wilson Poon, Antonio De Simone, Frank Cichos, Alexander Fischer, Santiago Muinos Landin, Nicola Soeker, Raymond Kapral, Pierre Gaspard, Marisol Ripoll, Francesc Sagues, Julia Yeomans, Amin Doostmohammadi, Igor Aronson, Clemens Bechinger, Holger Stark, Charlotte Hemelrijk, Francois Nedelec, Trinish Sarkar, Thibault Aryaksama, Mathilde Lacroix, Guillaume Duclos, Victor Yashunsky, Pascal Silberzan, Marino Arroyo, Sohan Kale

Abstract:

Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of active matter in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people. Inspired by biological microswimmers, various designs of autonomous synthetic nano- and micromachines have been proposed. Such machines provide the basis for multifunctional, highly responsive, intelligent (artificial) active materials, which exhibit emergent behavior and the ability to perform tasks in response to external stimuli. A major challenge for understanding and designing active matter is their inherent nonequilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Unraveling, predicting, and controlling the behavior of active matter is a truly interdisciplinary endeavor at the interface of biology, chemistry, ecology, engineering, mathematics, and physics. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter comprises a major challenge. Hence, to advance, and eventually reach a comprehensive understanding, this important research area requires a concerted, synergetic approach of the various disciplines.