Volatile-rich Sub-Neptunes as Hydrothermal Worlds: The Case of K2-18 b

The Astrophysical Journal Letters American Astronomical Society 977:2 (2024) l51

Authors:

Cindy N Luu, Xinting Yu, Christopher R Glein, Hamish Innes, Artyom Aguichine, Joshua Krissansen-Totton, Julianne I Moses, Shang-Min Tsai, Xi Zhang, Ngoc Truong, Jonathan J Fortney

The Roasting Marshmallows Program with IGRINS on Gemini South. II. WASP-121 b has Superstellar C/O and Refractory-to-volatile Ratios

The Astronomical Journal American Astronomical Society 168:6 (2024) 293

Authors:

Peter CB Smith, Jorge A Sanchez, Michael R Line, Emily Rauscher, Megan Weiner Mansfield, Eliza M-R Kempton, Arjun Savel, Joost P Wardenier, Lorenzo Pino, Jacob L Bean, Hayley Beltz, Vatsal Panwar, Matteo Brogi, Isaac Malsky, Jonathan Fortney, Jean-Michel Désert, Stefan Pelletier, Vivien Parmentier, Sai Krishna Teja Kanumalla, Luis Welbanks, Michael Meyer, John Monnier

Magma Ocean Evolution at Arbitrary Redox State.

Journal of geophysical research. Planets 129:12 (2024) e2024JE008576

Authors:

Harrison Nicholls, Tim Lichtenberg, Dan J Bower, Raymond Pierrehumbert

Abstract:

Interactions between magma oceans and overlying atmospheres on young rocky planets leads to an evolving feedback of outgassing, greenhouse forcing, and mantle melt fraction. Previous studies have predominantly focused on the solidification of oxidized Earth-similar planets, but the diversity in mean density and irradiation observed in the low-mass exoplanet census motivate exploration of strongly varying geochemical scenarios. We aim to explore how variable redox properties alter the duration of magma ocean solidification, the equilibrium thermodynamic state, melt fraction of the mantle, and atmospheric composition. We develop a 1D coupled interior-atmosphere model that can simulate the time-evolution of lava planets. This is applied across a grid of fixed redox states, orbital separations, hydrogen endowments, and C/H ratios around a Sun-like star. The composition of these atmospheres is highly variable before and during solidification. The evolutionary path of an Earth-like planet at 1 AU ranges between permanent magma ocean states and solidification within 1 Myr. Recently solidified planets typically host H 2 O - or H 2 -dominated atmospheres in the absence of escape. Orbital separation is the primary factor determining magma ocean evolution, followed by the total hydrogen endowment, mantle oxygen fugacity, and finally the planet's C/H ratio. Collisional absorption by H 2 induces a greenhouse effect which can prevent or stall magma ocean solidification. Through this effect, as well as the outgassing of other volatiles, geochemical properties exert significant control over the fate of magma oceans on rocky planets.

BOWIE-ALIGN: how formation and migration histories of giant planets impact atmospheric compositions

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 535:1 (2024) 171-186

Authors:

Anna BT Penzlin, Richard A Booth, James Kirk, James E Owen, E Ahrer, Duncan A Christie, Alastair B Claringbold, Emma Esparza-Borges, M López-Morales, NJ Mayne, Mason McCormack, Annabella Meech, Vatsal Panwar, Diana Powell, Denis E Sergeev, Jake Taylor, Peter J Wheatley, Maria Zamyatina

BOWIE-ALIGN: A JWST comparative survey of aligned versus misaligned hot Jupiters to test the dependence of atmospheric composition on migration history

RAS Techniques and Instruments Oxford University Press 3:1 (2024) 691-704

Authors:

James Kirk, Eva-Maria Ahrer, Anna BT Penzlin, James E Owen, Richard A Booth, Lili Alderson, Duncan A Christie, Alastair B Claringbold, Emma Esparza-Borges, Chloe E Fisher, Mercedes López-Morales, NJ Mayne, Mason McCormack, Annabella Meech, Vatsal Panwar, Diana Powell, Denis E Sergeev, Jake Taylor, Shang-Min Tsai, Daniel Valentine, Hannah R Wakeford, Peter J Wheatley, Maria Zamyatina

Abstract:

A primary objective of exoplanet atmosphere characterization is to learn about planet formation and evolution, however, this is challenged by degeneracies. To determine whether differences in atmospheric composition can be reliably traced to differences in evolution, we are undertaking a transmission spectroscopy survey with JWST to compare the compositions of a sample of hot Jupiters that have different orbital alignments around F stars above the Kraft break. Under the assumption that aligned planets migrate through the inner disc, while misaligned planets migrate after disc dispersal, the act of migrating through the inner disc should cause a measurable difference in the C/O between aligned and misaligned planets. We expect the amplitude and sign of this difference to depend on the amount of planetesimal accretion and whether silicates accreted from the inner disc release their oxygen. Here, we identify all known exoplanets that are suitable for testing this hypothesis, describe our JWST survey, and use noise simulations and atmospheric retrievals to estimate our survey’s sensitivity. With the selected sample of four aligned and four misaligned hot Jupiters, we will be sensitive to the predicted differences in C/O between aligned and misaligned hot Jupiters for a wide range of model scenarios.