Using SOFIA’s EXES to improve the upper limits for C6H2 and C4N2 in Titan’s atmosphere
    
    
        (2025)
    
        
      
Authors:
      Zachary McQueen, Curtis DeWitt, Antoine Jolly, Juan Alday, Nicholas Teanby, Véronique Vuitton, Panayotis Lavvas, Joseph Penn, Patrick Irwin, Conor Nixon
    
    
        
      
Abstract:
      IntroductionSaturn’s largest moon, Titan, has a dense atmosphere comprised mostly of nitrogen and methane. The photolysis and ionization of these major componentsleads to complex chemical reactions, which create substantial diversity among Titan’s minor atmospheric constituents. Remote sensing and molecular  pectroscopy historically have been a critical tool for detecting trace gases in Titan’s atmosphere and help corroborate predictions of Titan’s atmospheric composition from photochemical models. Following the Voyager and Cassini missions, which provided a wealth of spectroscopic studies of Titan’s  atmosphere, ground-based measurements have been useful for detecting elusive trace gases. The Echelon-Cross-Echelle Spectrometer (EXES) is a high-resolution (R ∼ 90, 000) mid-infrared spectrometer that was previously operated aboard NASA’s Stratospheric Observatory For Infrared Astronomy (SOFIA)(1 ). EXES benefited from the high altitude flights during the SOFIA mission to make observations above the bulk of the atmosphere to avoid strong telluric absorption lines that inhibit ground based mid-IR spectrometers such as its sister instrument TEXES.Here we present EXES observations of Titan which were made in an attempt to detect two trace gases, triacetylene (C6H2) and dicyanoacetylene (C4N2). C6H2 is an important polyyne and is predicted to form readily from the addition of the ethynyl (C2H) radical with diacetylene (C4H2). It remains yet tobe detected, though, and the previous upper limit study was limited by the lower spectral resolution of Voyager’s IRIS (R ∼ 145)(2 ). Delpech et al. 1994 derived an upper-limit of 6 × 10−11 which would be detectable by EXES.Gas-phase C4N2 formation is primarily completed through C3N addition to HCN or, alternatively, CN addition to HC3N(3 ). The ice-phase C4N2, which is formed through solid-state photochemical reactions on the surface of HC3N ice grains, has been detected in spectra measured by Voyager’s IRIS and CIRSduring the Cassini mission (4, 5 ), yet C4N2 in the gas-phase remains elusive to spectroscopic detections. Again, previous studies of the gas-phase upper limits (3σ = 1.53 × 10−9) were performed using spectra collected by CIRS (R ∼ 1240) which has a resolving power significantly lower than EXES(6 ). The high-resolution of EXES will help improve on the upper limits of both of these species and allow for an updated comparison to photochemical model predictions of their vertical profiles in Titan’s atmosphere.Observations and ModelingMid-infrared observations of Titan were made in June of 2021, using EXES. These observations aim to detect the ν11 out-of-plane bending mode of C6H2 at 621 cm−1 and the perpendicular ν9 stretch of the gasphase C4N2 at 472 cm−1. Figure 1 shows a small portion of the EXES spectrum measured at the 621 cm−1 spectral setting. In this region there are strong emission features from diacetylene (C4H2) and propyne (C3H4) which must be fit before analyzing the C6H2 upper limits. Highlighted in the blue box is the region where the ν11 vibrational mode for C6H2 should be present.To model the collected spectra, we use the arch-NEMESIS radiative transfer package which is a new Python implementation of the NEMESIS radiative transfer code (7, 8 ). The radiative transfer modeling of the measured spectra occurs in two steps. The initial step is to retrieve the atmospheric profiles of the aerosols and known gases using the archNEMESIS optimal estimation algorithm. For the 621 cm−1 spectral setting, the vertical profiles of C4H2, C3H4, and aerosol continuum are retrieved, however, at the 472 cm−1 region, there are no emission features to fit and just the continuum level is retrieved by adjusting the aerosol profile. For both spectral regions, we use a temperature profile and initial gas profiles defined in Vuitton et al. 2019 photochemical model (3 ). The quality of each retrieval is determined by a goodnessof-fit metric (χ2) which compares the residual of the modeled spectrum to the noise of the measurement. Following the retrieval, we derive the upper limits by building forward models of the spectral regions where the abundance of each target species is iteratively increased and a subsequent χ2 is determined. We then take the difference, Δχ2, between the retrieved and updated forward model χ2 to find where the abundance causes significant deviation from the retrieved spectrum. Step-profiles, which have a cutoff altitude and constant abundance above this cutoff, were used to determine the upper-limits for each species. This method has been applied for many different upper limits studies of gases predicted in Titan’s atmosphere (9, 10 ).ResultsBased on these observations, C6H2 and gas-phase C4N2 remain undetected and therefore, we derive the upper limits to their atmospheric abundance. We improve upon the upper limits of C6H2 and C4N2 by an order of magnitude for both species. Figure 2 shows Δχ2 increase sharply with increased abundance for both C6H2 and C4N2. For C6H2 the 3σ upper limit (Δχ2 = 9) is on the order of 10−11 and for C4N2, 10−10. These new upper limits improve on the previously derived upper limits by an order of magnitude for each target species. More work is still being done to precisely determine the upper limits and compare these values to the current photochemical model predictions of their abundance. The values of the 1σ, 2σ, and 3σ upper limits for each species will be reported in the presentation. The upper limits derived improved upon the previous upper limits by an order of magnitude and we are currently working on comparing these upper limits to photochemical models of Titan’s atmospheric composition to build a better understanding of the chemical pathways in Titan’s atmosphere which will also be discussed in the presentation. AcknowledgmentsThe material is based upon work supported by NASA under award number 80GSFC24M0006.References1. Richter et al., 20182. Delpech et al., 19943. Vuitton et al., 20194. Samuelson et al, 19975. Anderson et al, 20166. Jolly et al., 20157. Alday et al, 20258. Irwin et al., 20089. Nixon et al., 201010. Teanby et al., 2013