Awesome SOSS: transmission spectroscopy of WASP-96b with NIRISS/SOSS

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 524:1 (2023) 835-856

Authors:

Michael Radica, Luis Welbanks, Néstor Espinoza, Jake Taylor, Louis-Philippe Coulombe, Adina D Feinstein, Jayesh Goyal, Nicholas Scarsdale, Loïc Albert, Priyanka Baghel, Jacob L Bean, Jasmina Blecic, David Lafrenière, Ryan J MacDonald, Maria Zamyatina, Romain Allart1, Étienne Artigau, Natasha E Batalha, Neil James Cook, Nicolas B Cowan, Lisa Dang, René Doyon, Marylou Fournier-Tondreau, Doug Johnstone, Michael R Line, Sarah E Moran, Sagnick Mukherjee, Stefan Pelletier, Pierre-Alexis Roy, Geert Jan Talens, Joseph Filippazzo, Klaus Pontoppidan, Kevin Volk

The Hazy and Metal-rich Atmosphere of GJ 1214 b Constrained by Near- and Mid-infrared Transmission Spectroscopy

The Astrophysical Journal American Astronomical Society 951:2 (2023) 96

Authors:

Peter Gao, Anjali AA Piette, Maria E Steinrueck, Matthew C Nixon, Michael Zhang, Eliza M-R Kempton, Jacob L Bean, Emily Rauscher, Vivien Parmentier, Natasha E Batalha, Arjun B Savel, Kenneth E Arnold, Michael T Roman, Isaac Malsky, Jake Taylor

Spitzer IRS Observations of Titan as a Precursor to JWST MIRI Observations

PLANETARY SCIENCE JOURNAL American Astronomical Society 4:6 (2023) ARTN 114

Authors:

Brandon Park Coy, Conor A Nixon, Naomi Rowe-Gurney, Richard Achterberg, Nicholas A Lombardo, Leigh N Fletcher, Patrick Irwin

Abstract:

<jats:title>Abstract</jats:title> <jats:p>In this work, we present for the first time infrared spectra of Titan from the Spitzer Space Telescope (2004–2009). The data are from both the short wavelength–low resolution (SL; 5.13–14.29 <jats:italic>μ</jats:italic>m, <jats:italic>R</jats:italic> ∼ 60–127) and short wavelength–high resolution (SH; 9.89–19.51 <jats:italic>μ</jats:italic>m, <jats:italic>R</jats:italic> ∼ 600) channels showing the emissions of CH<jats:sub>4</jats:sub>, C<jats:sub>2</jats:sub>H<jats:sub>2</jats:sub>, C<jats:sub>2</jats:sub>H<jats:sub>4</jats:sub>, C<jats:sub>2</jats:sub>H<jats:sub>6</jats:sub>, C<jats:sub>3</jats:sub>H<jats:sub>4</jats:sub>, C<jats:sub>3</jats:sub>H<jats:sub>6</jats:sub>, C<jats:sub>3</jats:sub>H<jats:sub>8</jats:sub>, C<jats:sub>4</jats:sub>H<jats:sub>2</jats:sub>, HCN, HC<jats:sub>3</jats:sub>N, and CO<jats:sub>2</jats:sub>. We compare the results obtained for Titan from Spitzer to those of the Cassini Composite Infrared Spectrometer (CIRS) for the same time period, focusing on the 16.35–19.35 <jats:italic>μ</jats:italic>m wavelength range observed by the SH channel but impacted by higher noise levels in the CIRS observations. We use the SH data to provide estimated haze extinction cross sections for the 16.67–17.54 <jats:italic>μ</jats:italic>m range that are missing in previous studies. We conclude by identifying spectral features in the 16.35–19.35 <jats:italic>μ</jats:italic>m wavelength range that could be analyzed further through upcoming James Webb Space Telescope Cycle 1 observations with the Mid-Infrared Instrument (5.0–28.3 <jats:italic>μ</jats:italic>m, <jats:italic>R</jats:italic> ∼ 1500–3500). We also highlight gaps in the current spectroscopic knowledge of molecular bands, including candidate trace species such as C<jats:sub>60</jats:sub> and detected trace species such as C<jats:sub>3</jats:sub>H<jats:sub>6</jats:sub>, that could be addressed by theoretical and laboratory study.</jats:p>

Awesome SOSS: Atmospheric Characterisation of WASP-96 b using the JWST Early Release Observations

ArXiv 2305.16887 (2023)

Authors:

Jake Taylor, Michael Radica, Luis Welbanks, Ryan J MacDonald, Jasmina Blecic, Maria Zamyatina, Alexander Roth, Jacob L Bean, Vivien Parmentier, Louis-Philippe Coulombe, Adina D Feinstein, Néstor Espinoza, Björn Benneke, David Lafrenière, René Doyon, Eva-Maria Ahrer

Miniaturized Radiometer for an Ice Giants mission for haze and cloud characterization

(2023)

Authors:

Víctor Apéstigue, Daniel Toledo, Ignacio Arruego, Patrick Irwin, Pascal Rannou, Alejandro Gonzalo, Juan José Jiménez, Javier Martínez-Oter, Margarita Yela, Mar Sorribas, Eduardo Sebastian

Abstract:

Uranus and Neptune, the Ice Giants, are the unique planets in the Solar System that have not received a dedicated mission. However, studying these planets is crucial for understanding the formation and evolution of our planetary system and the outer systems, for which the ice planet systems are very common.Our current knowledge comes from Earth and space telescope limited observations and from the brief encounter with the Voyager 2 spacecraft almost three decades ago. The recent decadal survey [1] has established a flag mission to Uranus as the following strategic priority for the Nasa exploration program (apart from the ongoing missions to Mars and Europa). From ESA&#8217;s perspective, the outcomes from the Voyage 2050 [2] are also in alignment, recommending the agency&#8217;s participation in a future mission in a collaboration framework, as established in previous successful partnerships like Cassini-Huygens.Several reference missions have been proposed during the last decade [3-4], most of them suggesting an orbiter plus a descent probe configuration. For the orbiter, the scientific priorities should be to study the planet's bulk composition and internal structure, magnetic field, atmosphere circulation, rings, and satellite system. In the case of the descent probe, its primary mission should be to obtain the atmospheric noble gas abundances, noble gas isotope ratios, and the thermal structure of the atmosphere using a mass spectrometer and a meteorological package.Understanding the thermal structure and dynamics of Uranus&#8217; atmosphere requires studying the vertically distributed aerosols (hazes and clouds) and their microphysical and scattering properties. Indeed, aerosols affect the absorption and reflection of solar radiation, directly affecting the energy balance that drives the planet. In this work we present a lightweight radiometer, as a part of the descending probe, dedicated to studying Uranus&#8217;s aerosols. The principle of measurement is based on the vertical variation of the solar radiance at different wavelengths and geometries of observations as the probe falls using photodetectors, field-of-view masks, and interferential filters. From these observations, information on the vertical structure of clouds and hazes, particle size, or scattering properties could be derived.The radiometer takes its heritage from previous missions for Mars exploration [7-9] where its technology has demonstrated its endurance for extreme environments of operation, using limited resources in terms of power consumption, mass and volume footprints, and data budget. These characteristics make this instrument a valuable complementary probe&#8217;s payload for studying Uranus&#8217; atmosphere with a high scientific return.&#160;[1] Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023-2032.&#160; [2] Linda J. Tacconi, Christopher S. Arridge, et al, Voyage2050 Final recommendations from the Voyage 2050 Senior Committee. [3] Christopher S. Arridge, et al.. 2012. [4] Sushil K.AtreyaaMark, et al.,2019 [5] Ian J. Cohen et al 2022 P [6] Athul Pradeepkumar Girija.&#160; 2023&#160;[7] I. Arruego et al. 2017. [8] Apestigue, V. et al 2022 [9] P&#233;rez-Izquierdo, J., Sebasti&#225;n et al, 2016.