Assessing Robustness and Bias in 1D Retrievals of 3D Global Circulation Models at High Spectral Resolution: A WASP-76 b Simulation Case Study in Emission

The Astrophysical Journal American Astronomical Society 990:2 (2025) 106

Authors:

Lennart van Sluijs, Hayley Beltz, Isaac Malsky, Genevieve H Pereira, L Cinque, Emily Rauscher, Jayne Birkby

Abstract:

High-resolution spectroscopy (HRS) of exoplanet atmospheres has successfully detected many chemical species and is quickly moving toward detailed characterization of the chemical abundances and dynamics. HRS is highly sensitive to the line shape and position; thus, it can detect three-dimensional (3D) effects such as winds, rotation, and spatial variation of atmospheric conditions. At the same time, retrieval frameworks are increasingly deployed to constrain chemical abundances, pressure–temperature (P–T) structures, orbital parameters, and rotational broadening. To explore the multidimensional parameter space, we need computationally fast models, which are consequently mostly one-dimensional (1D). However, this approach risks introducing interpretation bias since the planet’s true nature is 3D. We investigate the robustness of this methodology at high spectral resolution by running 1D retrievals on simulated observations in emission within an observational framework using 3D global circulation models of the quintessential HJ WASP-76 b. We find that the retrieval broadly recovers conditions present in the atmosphere, but that the retrieved P–T and chemical profiles are not a homogeneous average of all spatial and phase-dependent information. Instead, they are most sensitive to spatial regions with large thermal gradients, which do not necessarily coincide with the strongest emitting regions. Our results further suggest that the choice of parameterization for the P–T and chemical profiles, as well as Doppler offsets among opacity sources, impact the retrieval results. These factors should be carefully considered in future retrieval analyses.

Machine learning spectral clustering techniques: Application to Jovian clouds from Juno/JIRAM and JWST/NIRSpec

Astronomy & Astrophysics EDP Sciences 701 (2025) a247

Authors:

F Biagiotti, LN Fletcher, D Grassi, MT Roman, G Piccioni, A Mura, I de Pater, T Fouchet, MH Wong, R Hueso, O King, H Melin, J Harkett, S Toogood, PGJ Irwin, F Tosi, A Adriani, G Sindoni, C Plainaki, R Sordini, R Noschese, A Cicchetti, G Orton, P Rodriguez-Ovalle, GL Bjoraker, S Levin, C Li, S Bolton

Abstract:

We present a new method, based on a joint application of a principal component analysis (PCA) and Gaussian mixture models (GMM), to automatically find similar groups of spectra in a collection. We applied the method (condensed in the public code chopper.py ) to archival Jupiter spectral data in the 2–5 µm range collected by NASA Juno/JIRAM in its first perijove passage (August 2016) and to mosaics of the great red spot (GRS) acquired by JWST/NIRSpec (July 2022). Using JIRAM data analyzed in previous work, we show that using a PCA+GMM clustering can increase the efficiency of the retrieval stage without any loss of accuracy in terms of the retrieved parameters. We show that a PCA+GMM approach is able to automatically identify spectra of known regions of interest (e.g., belts, zones, GRS) belonging to different clusters. The application of the method to the NIRSpec data leads to detection of substructures inside the GRS, which appears to be composed of an outer halo characterized by low reflectivity and an inner brighter main oval. By applying these techniques to JIRAM data, we were able to identify the same substructure. We remark that these new structures have not been seen before at visible wavelengths. In both cases, the spectra belonging to the inner oval have solar and thermal signals comparable to those belonging to the halo, but they present broadened 2.73 µm solar-reflected peaks. Performing forward simulations with the NEMESIS radiative transfer suite, we propose that the broadening may be caused by differences in the vertical extension of the main cloud layer. This finding is consistent with recent 3D fluid dynamics simulations.

Strict Limits on Potential Secondary Atmospheres on the Temperate Rocky Exo-Earth TRAPPIST-1 d

The Astrophysical Journal American Astronomical Society 989:2 (2025) 181

Authors:

Caroline Piaulet-Ghorayeb, Björn Benneke, Martin Turbet, Keavin Moore, Pierre-Alexis Roy, Olivia Lim, René Doyon, Thomas J Fauchez, Loïc Albert, Michael Radica, Louis-Philippe Coulombe, David Lafrenière, Nicolas B Cowan, Danika Belzile, Kamrul Musfirat, Mehramat Kaur, Alexandrine L’Heureux, Doug Johnstone, Ryan J MacDonald, Romain Allart, Lisa Dang, Lisa Kaltenegger, Stefan Pelletier, Jason F Rowe, Jake Taylor

Abstract:

The nearby TRAPPIST-1 system, with its seven small rocky planets orbiting a late-type M8 star, offers an unprecedented opportunity to search for secondary atmospheres on temperate terrestrial worlds. In particular, the 0.8 R⊕TRAPPIST-1 d lies at the edge of the habitable zone (Teq,A=0.3 = 262 K). Here we present the first 0.6–5.2 μm NIRSpec/PRISM transmission spectrum of TRAPPIST-1 d from two transits with JWST. We find that stellar contamination from unocculted bright heterogeneities introduces 500–1000 ppm visit-dependent slopes, consistent with constraints from the out-of-transit stellar spectrum. Once corrected, the transmission spectrum is flat within ±100–150 ppm, showing no evidence for a haze-like slope or molecular absorption despite NIRSpec/PRISM’s sensitivity to CH4, H2O, CO, SO2, and CO2. Our observations exclude clear, hydrogen-dominated atmospheres with high confidence (>3σ). We leverage our constraints on even trace amounts of CH4, H2O, and CO2 to further reject high mean molecular weight compositions analogous to a haze-free Titan, a cloud-free Venus, early Mars, and both Archean Earth and a cloud-free modern Earth scenario (>95% confidence). If TRAPPIST-1 d retains an atmosphere, it is likely extremely thin or contains high-altitude aerosols, with water cloud formation at the terminator predicted by 3D global climate models. Alternatively, if TRAPPIST-1 d is airless, our evolutionary models indicate that TRAPPIST-1 b, c, and d must have formed with ≲4 Earth oceans of water, though this would not preclude atmospheres on the cooler habitable-zone planets TRAPPIST-1 e, f, and g.

The impact of different haze types on the atmospheres and observations of hot Jupiters: 3D simulations of HD 189733b, HD 209458b, and WASP-39b

Monthly Notices of the Royal Astronomical Society, Volume 542, Issue 3, pp.1873–1900 (2025)

Authors:

Mei Ting Mak, Denis E Sergeev, Nathan J Mayne, Maria Zamyatina, Maria E Steinrueck, James Manners, Éric Hébrard, David K Sing, Krisztian Kohary

Abstract:

We present the results from the simulations of the atmospheres of hot-Jupiters HD 189733b, HD 209458b, and WASP-39b, assuming the presence of three different types of haze. Using a 3D general circulation model, the Unified Model, we capture the advection, settling, and radiative impact of Titan-, water-world-, and soot-like haze, with a particle radius of 1.5 nm. We show that the radiative impact of haze leads to drastic changes in the thermal structure and circulation in the atmosphere. We then show that in all our simulations, (1) the super-rotating jet largely determines the day-to-night haze distribution, (2) eddies drive the latitudinal haze distribution, and (3) the divergent and eddy component of the wind control the finer structure of the haze distribution. We further show that the stronger the absorption strength of the haze, the stronger the super-rotating jet, lesser the difference of the day-to-night haze distribution, and larger the transit depth in the synthetic transmission spectrum. We also demonstrate that the presence of such small hazes could result in a stronger haze opacity over the morning terminator in all three planets. This could lead to an observable terminator asymmetry in WASP-39b, with the morning terminator presenting a larger transit depth than the evening terminator. This work suggests that, although it might not be a typical detection feature for hot Jupiters, an observed increase in transit depth over the morning terminator across the ultraviolet and optical wavelength regime could serve as a strong indicator of the presence of haze.

Assessing robustness and bias in 1D retrievals of 3D Global Circulation Models at high spectral resolution: a WASP-76 b simulation case study in emission

(2025)

Authors:

Lennart van Sluijs, Hayley Beltz, Isaac Malsky, Genevieve H Pereira, L Cinque, Emily Rauscher, Jayne Birkby