A Moderate Albedo from Reflecting Aerosols on the Dayside of WASP-80 b Revealed by JWST/NIRISS Eclipse Spectroscopy

Astronomical Journal American Astronomical Society 169:5 (2025) 277

Authors:

Kim Morel, Louis-Philippe Coulombe, Jason F Rowe, David Lafrenière, Loïc Albert, Étienne Artigau, Nicolas B Cowan, Lisa Dang, Michael Radica, Jake Taylor, Caroline Piaulet-Ghorayeb, Pierre-Alexis Roy, Björn Benneke, Antoine Darveau-Bernier, Stefan Pelletier, René Doyon, Doug Johnstone, Adam B Langeveld, Romain Allart, Laura Flagg, Jake D Turner

Abstract:

Secondary eclipse observations of exoplanets at near-infrared wavelengths enable the detection of thermal emission and reflected stellar light, providing insights into the thermal structure and aerosol composition of their atmospheres. These properties are intertwined as aerosols influence the energy budget of the planet. WASP-80 b is a warm gas giant with an equilibrium temperature of 825 K orbiting a bright late-K/early-M dwarf, and for which the presence of aerosols in its atmosphere has been suggested from previous Hubble Space Telescope and Spitzer observations. We present an eclipse spectrum of WASP-80 b obtained with JWST NIRISS/SOSS, spanning 0.68–2.83 μm, which includes the first eclipse measurements below 1.1 μm for this exoplanet, extending our ability to probe light reflected by its atmosphere. When a reflected light geometric albedo is included in the atmospheric retrieval, our eclipse spectrum is best explained by a reflected light contribution of ∼30 ppm at short wavelengths, although further observations are needed to statistically confirm this preference. We measure a dayside brightness temperature of TB=811−70+69 K and constrain the reflected light geometric albedo across the SOSS wavelength range to Ag=0.204−0.056+0.051 , allowing us to estimate a 1σ range for the Bond albedo of 0.148 ≲ AB ≲ 0.383. By comparing our spectrum with aerosol models, we find that manganese sulfide and silicate clouds are disfavored, while cloud species with weak-to-moderate near-infrared reflectance, along with soots or low formation-rate tholin hazes, are consistent with our eclipse spectrum.

Are there Spectral Features in the MIRI/LRS Transmission Spectrum of K2-18b?

ArXiv 2504.15916 (2025)

A Search for the Near‐Surface Particulate Layer Using Venera 13 In Situ Spectroscopic Observations

Journal of Geophysical Research: Planets American Geophysical Union 130:4 (2025) e2024JE008728

Authors:

Shubham V Kulkarni, Patrick GJ Irwin, Colin F Wilson, Nikolai I Ignatiev

Abstract:

Whether or not there is a particulate layer in the lowest 10 km of the Venusian atmosphere is still an open question. Some of the past in situ experiments showed the presence of a detached particulate layer, and a few suggested the existence of finely dispersed aerosols, while other instruments supported the idea of no particulate matter in the deep atmosphere. In this work, we investigate the presence of a near‐surface particulate layer (NSPL) using in situ data from the Venera 13 mission. While the original spectrophotometric data from Venera 13 were lost, we have reconstructed a part of this data by digitizing the old graphic material and selected the eight most reliable Venera 13 downward radiance profiles from 0.48 to 0.8 μ ${\upmu }$ m for our retrievals. The retrievals suggest the existence of the particulate layer with a peak in the altitude range of 3.5–5 km. They further indicate a log‐normal particle size distribution with a mean radius between 0.6 and 0.85 μ ${\upmu }$ m. The retrievals constrain the real refractive index of the particles to lie around the range of 1.4–1.6, with the imaginary refractive index of a magnitude of 10 − 3 ${10}^{-3}$ . Based on refractive index retrievals, uplifted basalt particles or volcanic ash could be responsible for near‐surface particulates. In comparison, volatile condensates appear less likely to be behind the formation of NSPL.

Limited Hysteresis in the Atmospheric Dynamics of Hot Jupiters

The Astrophysical Journal American Astronomical Society 983:1 (2025) 7

A JWST Panchromatic Thermal Emission Spectrum of the Warm Neptune Archetype GJ 436b

The Astrophysical Journal Letters American Astronomical Society 982:2 (2025) l39

Authors:

Sagnick Mukherjee, Everett Schlawin, Taylor J Bell, Jonathan J Fortney, Thomas G Beatty, Thomas P Greene, Kazumasa Ohno, Matthew M Murphy, Vivien Parmentier, Michael R Line, Luis Welbanks, Lindsey S Wiser, Marcia J Rieke