A comprehensive picture about Jovian clouds and hazes from Juno/JIRAM infrared spectral data
(2025)
Abstract:
A geochemical view on the ubiquity of CO2 on rocky exoplanets with atmospheres
Copernicus Publications (2025)
Abstract:
To aid the search for atmospheres on rocky exoplanets, we should know what to look for. An unofficial paradigm is to anticipate CO2 present in these atmospheres, through analogy to the solar system and through theoretical modelling. This CO2 would be outgassed from molten silicate rock produced in the planet’s mostly-solid interior—an ongoing self-cooling mechanism that should proceed, in general, so long as the planet has sufficient internal heat to lose.Outgassing of CO2 requires relatively oxidising conditions. Previous work has noted the importance of how oxidising the planet interior is (the oxygen fugacity), which depends strongly on its rock composition. Current models presume that redox reactions between iron species control oxygen fugacity. However, iron alone need not be the sole dictator of how oxidising a planet is. Indeed, carbon itself is a powerful redox element, with great potential to feed back upon the mantle redox state as it melts. Whilst Earth is carbon-poor, even a slightly-higher volatile endowment could trigger carbon-powered geochemistry.We offer a new framework for how carbon is transported from solid planetary interior to atmosphere. The model incorporates realistic carbon geochemistry constrained by recent experiments on CO2 solubility in molten silicate, as well as redox couplings between carbon and iron that have never before been applied to exoplanets. We also incorporate a coupled 1D energy- and mass-balance model to provide first-order predictions of the rate of volcanism.We show that carbon-iron redox coupling maintains interior oxygen fugacity in a narrow range: more reducing than Earth magma, but not reducing enough to destabilise CO2 gas. We predict that most secondary atmospheres, if present, should contain CO2, although the total pressure could be low. An atmospheric non-detection may indicate a planet either born astonishingly dry, or having shut off its internal heat engine.Astronomical Searches for Heavy Hydrocarbons in Titan’s Atmosphere with IRTF/TEXES
(2025)
Abstract:
Circulation models and JWST observations of inflated ultra-hot Jupiters
Copernicus Publications (2025)
Abstract:
Introduction: Recent advances in observation with the JWST and high-resolution ground-based instruments have enabled the study of exoplanets to progress towards atmospheric characterisation, as opposed to merely detection. Hot and ultra-hot Jupiters remain among the best characterised and studied class of exoplanet, due to their large sizes and close orbits, however how the internal heating and resulting radius inflation of bloated ultra-hot Jupiters and related coupling to the internal magnetic field impacts their atmospheric circulation remains an open question. Moreover, the impact of atmospheric dynamics on observable properties can now be studied in detail. This study investigates the effect of varying both atmospheric drag and internal heat flux on the observable properties of WASP-76b, with comparisons made to JWST NIRSpec white-light phase curves. In addition, we perform a broader parameter sweep using the SPARC/MITgcm to investigate the influence of internal heating and inflated radii on the observable properties of hot and ultra-hot Jupiters.Methods: A suite of general circulation models are run, which solve the primitive equations of meteorology coupled to non-grey correlated-k radiative transfer with the SPARC/MITgcm [1]. The effect of Lorentz forces is represented by changing a spatially constant drag timescale , and for WASP-76b we consider two different internal heat fluxes for comparison, across the range of predicted values for hot and ultra-hot Jupiters [2]. We then will perform a broader parameter sweep, exploring the space of inflated-radii hot and ultra-hot Jupiters by covering a range of irradiation levels from zero-albedo full-redistribution equilibrium temperatures of 1000 – 3200K, again using the SPARC/MITgcm. This parameter space is inclusive of most inflated gas-giant planets, excluding KELT-9b, and will allow us to study the impact of internal heating on atmospheric circulation, with interior heating and evolution modelled using MESA [3]. We then use the gCMCRT radiative transfer code [4] to post-process the GCM results to produce simulated phase curves.Results: The key result from this study is shown in Figure 1, with simulated phase curves shown in comparison to Spitzer telescope data [5] at 3.6mm. We make the comparison to Spitzer data here as a placeholder for the comparison to JWST NIRSpec data, as the JWST data is not yet published. Figure 3 shows the impact of the interior heat flux on the internal temperature structure of WASP-76b. There is no observable difference between the interior heat flux scenarios. Figures 2 and 4 show characteristics of the atmospheric dynamics and temperature structure. Strong drag acts to suppress all winds throughout the atmosphere, as is expected, while intermediate drag removes the offset of the hot spot due to the suppression of the deep equatorial jet. There is a strong equatorial jet within the deep atmosphere, and the T-P profile implies that cloud species Al2O4 and Mg2SiO4 can form on the night-side and terminators of WASP-76b, and within its deep atmosphere.Conclusions: Spitzer data is best matched by a strong () drag case. There is no potentially observable difference between the hot interior flux and cold interior flux. The comparisons of these simulated phase curve to JWST NIRSpec white-light phase curves will help further constrain drag in the ultra-hot regime, which will be a useful point of comparison to other ultra-hot Jupiters. Other ultra-hot Jupiters with Spitzer phase-curves (WASP-18b [6], WASP-103b [7], WASP-121b [8]) also show high dayside-nightside temperature differences. This may imply that the drag mechanisms are similar in each planet in the ultra-hot regime (~2000-2500 K). New JWST NIRSpec/G395H phase-curve data (JWST GO proposal 5268) will also constrain metallicity, breaking the drag/metallicity degeneracy. The similarity in deep-atmosphere temperature shown by Figure 3 motivates the need for a parameter sweep where the temperature at the bottom boundary is varied, as opposed to an interior heat flux, in order to speed up convergence. Likewise, the T-P profile in Figure 4 motivates the need for longer simulation runs, as the model has not reached equilibrium within the deep atmosphere.References:[1] Showman, A.P. et al. (2009), The Astrophysical Journal, 699(1), pp. 564–584.[2] Thorngren, D. et al. (2019), ApJL (Vol. 884, Issue 1)[3] Jermyn, A.S. et al. (2023), The Astrophysical Journal Supplement Series, 265, p. 15.[4] Lee, E.K. et al. (2022), The Astrophysical Journal, 929(2), p. 180[5] May, E.M. et al. (2021), The Astronomical Journal, 162(4), p. 158.[6] Maxted, P.F. et al. (2012), Monthly Notices of the Royal Astronomical Society, 428(3), pp. 2645–2660[7] Kreidberg, L. et al. (2018), The Astronomical Journal, 156(1), p. 17[8] Davenport, B. et al. (2025), Available at: https://arxiv.org/abs/2503.12521 (Accessed: 20 March 2025).Comparative study of the retrievals from Venera 11, 13, and 14 spectrophotometric data.
(2025)