Time-resolved absorption of six chemical species with MAROON-X points to a strong drag in the ultra-hot Jupiter TOI-1518 b
Astronomy & Astrophysics EDP Sciences 698 (2025) a314
Abstract:
Context . Wind dynamics play a pivotal role in governing transport processes within planetary atmospheres, influencing atmospheric chemistry, cloud formation, and the overall energy budget. Understanding the strength and patterns of winds is crucial for comprehensive insights into the physics of ultra-hot-Jupiter atmospheres. Current research has proposed different mechanisms that limit wind speeds in these atmospheres. Aims . This study focuses on unraveling the wind dynamics and the chemical composition in the atmosphere of the ultra-hot Jupiter TOI-1518 b. Methods . Two transit observations using the high-resolution ( R λ ∼ 85 000) optical (spectral coverage between 490 and 920 nm) spectrograph MAROON-X were obtained and analyzed to explore the chemical composition and wind dynamics using the cross-correlation techniques, global circulation models (GCMs), and atmospheric retrieval. Results . We report the detection of 14 species in the atmosphere of TOI-1518 b through cross-correlation analysis. VO was detected only with the new HyVO line list, whereas TiO was not detected. Additionally, we measured the time-varying cross-correlation trails for six different species, compared them with predictions from GCMs, and conclude that a strong drag is slowing the winds in TOI-1518 b’s atmosphere ( τ drag ≈ 10 3 −10 4 s). We find that the trails are species dependent. Fe+ favors stronger drag than Fe, which we interpret as a sign of magnetic effects being responsible for the observed strong drag. Furthermore, we show that Ca+ probes layers above the Roche lobe, leading to a qualitatively different trail than the other species. Finally, We used a retrieval analysis to further characterize the abundances of the different species detected. Our analysis is refined thanks to the updated planetary mass of 1.83 ± 0.47 M Jup we derived from new Sophie radial-velocity observations. We measure an abundance of Fe of log 10 Fe = −4.88 −0.76 +0.63 corresponding to 0.07 to 1.62 solar enrichment. For the other elements, the retrievals appear to be biased, probably due to the different K p /V sys shifts between Fe and the other elements, which we demonstrate for the case of VO.AGNI: A radiative-convective model for lava planet atmospheres
Journal of Open Source Software The Open Journal 10:109 (2025) 7726-7726
JWST NIRISS Transmission Spectroscopy of the Super-Earth GJ 357b, a Favourable Target for Atmospheric Retention
(2025)
Escaping Helium and a Highly Muted Spectrum Suggest a Metal-enriched Atmosphere on Sub-Neptune GJ 3090 b from JWST Transit Spectroscopy
The Astrophysical Journal Letters American Astronomical Society 985:1 (2025) l10
Seasonal Evolution of Titan’s Stratospheric Tilt and Temperature Field at High Resolution from Cassini/CIRS
The Planetary Science Journal IOP Publishing 6:5 (2025) 114