Improved Design of an Advanced Ice Giants Net Flux Radiometer

Space Science Reviews 220:1 (2024)

Authors:

S Aslam, SB Calcutt, T Hewagama, PG Irwin, C Nixon, G Quilligan, MC Roos-Serote, G Villanueva

Abstract:

In this paper, the improved design of an Ice Giants Net Flux Radiometer (IG-NFR), for inclusion as a payload on a future Uranus probe mission, is given. IG-NFR will measure the net radiation flux, in seven spectral bands, each with a 10° Field-Of-View (FOV) and in five viewing angles as a function of altitude. Net flux measurements within spectral filter bands, ranging from solar to far-infrared, will help derive radiative heating and cooling profiles, and will significantly contribute to our understanding of the planet’s atmospheric heat balance and structure, tropospheric 3-D flow, and compositions and opacities of the cloud layers. The IG-NFR uses an array of non-imaging Winston cones integrated to a matched thermopile detector Focal Plane Assembly (FPA), with individual bandpass filters and windows, housed in a vacuum micro-vessel. The FPA thermopile detector signals are read out in parallel mode, amplified and processed by a multi-channel digitizer application specific integrated circuit (MCD ASIC) under field programmable gate array (FPGA) control. The vacuum micro-vessel rotates providing chopping between FOV’s of upward and downward radiation fluxes. This unique design allows for small net flux measurements in the presence of large ambient fluxes and rapidly changing temperatures during the probe descent to ≥10 bar pressure.

Muted Features in the JWST NIRISS Transmission Spectrum of Hot Neptune LTT 9779b

The Astrophysical Journal Letters American Astronomical Society 962:1 (2024) l20

Authors:

Michael Radica, Louis-Philippe Coulombe, Jake Taylor, Loic Albert, Romain Allart, Björn Benneke, Nicolas B Cowan, Lisa Dang, David Lafrenière, Daniel Thorngren, Étienne Artigau, René Doyon, Laura Flagg, Doug Johnstone, Stefan Pelletier, Pierre-Alexis Roy

Sulfur dioxide in the mid-infrared transmission spectrum of WASP-39b.

Nature 626:8001 (2024) 979-983

Authors:

Diana Powell, Adina D Feinstein, Elspeth KH Lee, Michael Zhang, Shang-Min Tsai, Jake Taylor, James Kirk, Taylor Bell, Joanna K Barstow, Peter Gao, Jacob L Bean, Jasmina Blecic, Katy L Chubb, Ian JM Crossfield, Sean Jordan, Daniel Kitzmann, Sarah E Moran, Giuseppe Morello, Julianne I Moses, Luis Welbanks, Jeehyun Yang, Xi Zhang, Eva-Maria Ahrer, Aaron Bello-Arufe, Jonathan Brande, SL Casewell, Nicolas Crouzet, Patricio E Cubillos, Brice-Olivier Demory, Achrène Dyrek, Laura Flagg, Renyu Hu, Julie Inglis, Kathryn D Jones, Laura Kreidberg, Mercedes López-Morales, Pierre-Olivier Lagage, Erik A Meier Valdés, Yamila Miguel, Vivien Parmentier, Anjali AA Piette, Benjamin V Rackham, Michael Radica, Seth Redfield, Kevin B Stevenson, Hannah R Wakeford, Keshav Aggarwal, Munazza K Alam, Natalie M Batalha, Natasha E Batalha, Björn Benneke, Zach K Berta-Thompson, Ryan P Brady, Claudio Caceres, Aarynn L Carter, Jean-Michel Désert, Joseph Harrington, Nicolas Iro, Michael R Line, Joshua D Lothringer, Ryan J MacDonald, Luigi Mancini, Karan Molaverdikhani, Sagnick Mukherjee, Matthew C Nixon, Apurva V Oza, Enric Palle, Zafar Rustamkulov, David K Sing, Maria E Steinrueck, Olivia Venot, Peter J Wheatley, Sergei N Yurchenko

Abstract:

The recent inference of sulfur dioxide (SO2) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations1-3 suggests that photochemistry is a key process in high-temperature exoplanet atmospheres4. This is because of the low (<1 ppb) abundance of SO2 under thermochemical equilibrium compared with that produced from the photochemistry of H2O and H2S (1-10 ppm)4-9. However, the SO2 inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.05 μm and, therefore, the detection of other SO2 absorption bands at different wavelengths is needed to better constrain the SO2 abundance. Here we report the detection of SO2 spectral features at 7.7 and 8.5 μm in the 5-12-μm transmission spectrum of WASP-39b measured by the JWST Mid-Infrared Instrument (MIRI) Low Resolution Spectrometer (LRS)10. Our observations suggest an abundance of SO2 of 0.5-25 ppm (1σ range), consistent with previous findings4. As well as SO2, we find broad water-vapour absorption features, as well as an unexplained decrease in the transit depth at wavelengths longer than 10 μm. Fitting the spectrum with a grid of atmospheric forward models, we derive an atmospheric heavy-element content (metallicity) for WASP-39b of approximately 7.1-8.0 times solar and demonstrate that photochemistry shapes the spectra of WASP-39b across a broad wavelength range.

Behind the mask: can HARMONI@ELT detect biosignatures in the reflected light of Proxima b?

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 528:2 (2024) 3509-3522

Authors:

Sophia R Vaughan, Jayne L Birkby, Niranjan Thatte, Alexis Carlotti, Mathis Houllé, Miguel Pereira-Santaella, Fraser Clarke, Arthur Vigan, Zifan Lin, Lisa Kaltenegger

Near-infrared transmission spectroscopy of HAT-P-18 b with NIRISS: Disentangling planetary and stellar features in the era of JWST

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 528:2 (2024) 3354-3377

Authors:

Marylou Fournier-Tondreau, Ryan J MacDonald, Michael Radica, David Lafrenière, Luis Welbanks, Caroline Piaulet, Louis-Philippe Coulombe, Romain Allart, Kim Morel, Étienne Artigau, Loïc Albert, Olivia Lim, René Doyon, Björn Benneke, Jason F Rowe, Antoine Darveau-Bernier, Nicolas B Cowan, Nikole K Lewis, Neil J Cook, Laura Flagg, Frédéric Genest, Stefan Pelletier, Doug Johnstone, Lisa Dang, Lisa Kaltenegger, Jake Taylor, Jake D Turner