The bolometric Bond albedo and energy balance of Uranus

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025)

Authors:

Patrick GJ Irwin, Daniel D Wenkert, Amy A Simon, Emma Dahl, Heidi B Hammel

Abstract:

<jats:title>Abstract</jats:title> <jats:p>Using a newly developed ‘holistic’ atmospheric model of the aerosol structure in Uranus’s atmosphere, based upon observations made by HST/STIS, Gemini/NIFS and IRTF/SpeX from 2000 – 2009, we make a new estimate the bolometric Bond albedo of Uranus during this time of A* = 0.338 ± 0.011, with a phase integral of q* = 1.36 ± 0.03. Then, using a simple seasonal model, developed to be consistent with the disc-integrated blue and green magnitude data from the Lowell Observatory from 1950 – 2016, we model how Uranus’s reflectivity and heat budget vary during its orbit and determine new orbital-mean average values for the bolometric Bond albedo of $\overline{A^*} = 0.349 \pm 0.016$ and for the absorbed solar flux of $\overline{P_\mathrm{in}}=0.604 \pm 0.027$ W m−2. Assuming the outgoing thermal flux to be $\overline{P_\mathrm{out}}=0.693 \pm 0.013$ W m−2, as previously determined from Voyager 2 observations, we arrive at a new estimate of Uranus’s average heat flux budget of Pout/Pin = 1.15 ± 0.06, finding considerable variation with time due to Uranus’s significant orbital eccentricity of 0.046. This leads the flux budget to vary from Pout/Pin = 1.03 near perihelion, to 1.24 near aphelion. We conclude that although Pout/Pin is considerably smaller than for the other giant planets, Uranus is not in thermal equilibrium with the Sun.</jats:p>

The atmosphere of Titan in late northern summer from JWST and Keck observations

Nature Astronomy Springer Nature (2025)

Authors:

Conor A Nixon, Bruno Bézard, Thomas Cornet, Brandon Park Coy, Imke de Pater, Maël Es-Sayeh, Heidi B Hammel, Emmanuel Lellouch, Nicholas A Lombardo, Manuel López-Puertas, Juan M Lora, Pascal Rannou, Sébastien Rodriguez, Nicholas A Teanby, Elizabeth P Turtle, Richard K Achterberg, Carlos Alvarez, Ashley G Davies, Katherine de Kleer, Greg Doppmann, Leigh N Fletcher, Alexander G Hayes, Bryan J Holler, Patrick GJ Irwin, Carolyn Jordan, Oliver RT King, Nicholas W Kutsop, Theresa C Marlin, Henrik Melin, Stefanie N Milam, Edward M Molter, Luke Moore, Yaniss Nyffenegger-Péré, James O’Donoghue, John O’Meara, Scot CR Rafkin, Michael T Roman, Arina Rostopchina, Naomi Rowe-Gurney, Carl Schmidt, Judy Schmidt, Christophe Sotin, Tom S Stallard, John A Stansberry, Robert A West

Abstract:

Saturn’s moon Titan undergoes a long annual cycle of 29.45 Earth years. Titan’s northern winter and spring were investigated in detail by the Cassini–Huygens spacecraft (2004–2017), but the northern summer season remains sparsely studied. Here we present new observations from the James Webb Space Telescope (JWST) and Keck II telescope made in 2022 and 2023 during Titan’s late northern summer. Using JWST’s mid-infrared instrument, we spectroscopically detected the methyl radical, the primary product of methane break-up and key to the formation of ethane and heavier molecules. Using the near-infrared spectrograph onboard JWST, we detected several non-local thermodynamic equilibrium CO and CO2 emission bands, which allowed us to measure these species over a wide altitude range. Lastly, using the near-infrared camera onboard JWST and Keck II, we imaged northern hemisphere tropospheric clouds evolving in altitude, which provided new insights and constraints on seasonal convection patterns. These observations pave the way for new observations and modelling of Titan’s climate and meteorology as it progresses through the northern fall equinox, when its atmosphere is expected to show notable seasonal changes.

The Climates and Thermal Emission Spectra of Prime Nearby Temperate Rocky Exoplanet Targets

The Astrophysical Journal American Astronomical Society 984:2 (2025) 181

Authors:

Tobi Hammond, Thaddeus D Komacek, Ravi K Kopparapu, Thomas J Fauchez, Avi M Mandell, Eric T Wolf, Vincent Kofman, Stephen R Kane, Ted M Johnson, Anmol Desai, Giada Arney, Jaime S Crouse

Abstract:

Over the course of the past decade, advances in radial velocity and transit techniques have enabled the detection of rocky exoplanets in the habitable zones of nearby stars. Future observations with novel methods are required to characterize this sample of planets, especially those that are nontransiting. One proposed method is the Planetary Infrared Excess (PIE) technique, which would enable the characterization of nontransiting planets by measuring the excess IR flux from the planet relative to the star’s spectral energy distribution. In this work, we predict the efficacy of future observations using the PIE technique by potential future observatories such as the MIRECLE mission concept. To do so, we conduct a broad suite of 21 general circulation model (GCM) simulations, with ExoCAM, of seven nearby habitable zone targets for three choices of atmospheric composition with varying partial pressure of CO2. We then construct thermal phase curves and emission spectra by post-processing our ExoCAM GCM simulations with the Planetary Spectrum Generator (PSG). We find that all cases have distinguishable carbon dioxide and water features assuming a 90° orbital inclination. Notably, we predict that CO2 is potentially detectable at 15 μm with MIRECLE for at least four nearby known nontransiting rocky planet candidate targets in the habitable zone: Proxima Centauri b, GJ 1061 d, GJ 1002 b, and Teegarden’s Star c. Our ExoCAM GCMs and PSG post-processing demonstrate the potential to observationally characterize nearby nontransiting rocky planets and better constrain the potential for habitability in our solar neighborhood.

Effects of transient stellar emissions on planetary climates of tidally-locked exo-earths

(2025)

Authors:

Howard Chen, Paolo De Luca, Assaf Hochman, Thaddeus D Komacek

Ground-breaking exoplanet science with the ANDES spectrograph at the ELT

Experimental Astronomy Springer 59:3 (2025) 29

Authors:

Enric Palle, Katia Biazzo, Emeline Bolmont, Paul Mollière, Katja Poppenhaeger, Jayne Birkby, Matteo Brogi, Gael Chauvin, Andrea Chiavassa, Jens Hoeijmakers, Emmanuel Lellouch, Christophe Lovis, Roberto Maiolino, Lisa Nortmann, Hannu Parviainen, Lorenzo Pino, Martin Turbet, Jesse Weder, Simon Albrecht, Simone Antoniucci, Susana C Barros, Andre Beaudoin, Bjorn Benneke, Isabelle Boisse

Abstract:

In the past decade the study of exoplanet atmospheres at high-spectral resolution, via transmission/emission spectroscopy and cross-correlation techniques for atomic/molecular mapping, has become a powerful and consolidated methodology. The current limitation is the signal-to-noise ratio that one can obtain during a planetary transit, which is in turn ultimately limited by telescope size. This limitation will be overcome by ANDES, an optical and near-infrared high-resolution spectrograph for the Extremely Large Telescope, which is currently in Phase B development. ANDES will be a powerful transformational instrument for exoplanet science. It will enable the study of giant planet atmospheres, allowing not only an exquisite determination of atmospheric composition, but also the study of isotopic compositions, dynamics and weather patterns, mapping the planetary atmospheres and probing atmospheric formation and evolution models. The unprecedented angular resolution of ANDES, will also allow us to explore the initial conditions in which planets form in proto-planetary disks. The main science case of ANDES, however, is the study of small, rocky exoplanet atmospheres, including the potential for biomarker detections, and the ability to reach this science case is driving its instrumental design. Here we discuss our simulations and the observing strategies to achieve this specific science goal. Since ANDES will be operational at the same time as NASA’s JWST and ESA’s ARIEL missions, it will provide enormous synergies in the characterization of planetary atmospheres at high and low spectral resolution. Moreover, ANDES will be able to probe for the first time the atmospheres of several giant and small planets in reflected light. In particular, we show how ANDES will be able to unlock the reflected light atmospheric signal of a golden sample of nearby non-transiting habitable zone earth-sized planets within a few tenths of nights, a scientific objective that no other currently approved astronomical facility will be able to reach.