Ground-breaking exoplanet science with the ANDES spectrograph at the ELT
Experimental Astronomy Springer 59:3 (2025) 29
Abstract:
In the past decade the study of exoplanet atmospheres at high-spectral resolution, via transmission/emission spectroscopy and cross-correlation techniques for atomic/molecular mapping, has become a powerful and consolidated methodology. The current limitation is the signal-to-noise ratio that one can obtain during a planetary transit, which is in turn ultimately limited by telescope size. This limitation will be overcome by ANDES, an optical and near-infrared high-resolution spectrograph for the Extremely Large Telescope, which is currently in Phase B development. ANDES will be a powerful transformational instrument for exoplanet science. It will enable the study of giant planet atmospheres, allowing not only an exquisite determination of atmospheric composition, but also the study of isotopic compositions, dynamics and weather patterns, mapping the planetary atmospheres and probing atmospheric formation and evolution models. The unprecedented angular resolution of ANDES, will also allow us to explore the initial conditions in which planets form in proto-planetary disks. The main science case of ANDES, however, is the study of small, rocky exoplanet atmospheres, including the potential for biomarker detections, and the ability to reach this science case is driving its instrumental design. Here we discuss our simulations and the observing strategies to achieve this specific science goal. Since ANDES will be operational at the same time as NASA’s JWST and ESA’s ARIEL missions, it will provide enormous synergies in the characterization of planetary atmospheres at high and low spectral resolution. Moreover, ANDES will be able to probe for the first time the atmospheres of several giant and small planets in reflected light. In particular, we show how ANDES will be able to unlock the reflected light atmospheric signal of a golden sample of nearby non-transiting habitable zone earth-sized planets within a few tenths of nights, a scientific objective that no other currently approved astronomical facility will be able to reach.Improved Carbon and Nitrogen Isotopic Ratios for CH 3 CN in Titan’s Atmosphere Using ALMA
The Planetary Science Journal IOP Publishing 6:5 (2025) 107
Abstract:
Titan, Saturn’s largest satellite, maintains an atmosphere composed primarily of nitrogen (N2) and methane (CH4) that leads to complex organic chemistry. Some of the nitriles (CN-bearing organics) on Titan are known to have substantially enhanced 15N abundances compared to Earth and Titan’s dominant nitrogen (N2) reservoir. The 14N/15N isotopic ratio in Titan’s nitriles can provide better constraints on the synthesis of nitrogen-bearing organics in planetary atmospheres as well as insights into the origin of Titan’s large nitrogen abundance. Using high signal-to-noise ratio (>13), disk-integrated observations obtained with the Atacama Large Millimeter/submillimeter Array Band 6 receiver (211–275 GHz), we measure the 14N/15N and 12C/13C isotopic ratios of acetonitrile (CH3CN) in Titan’s stratosphere. Using the NEMESIS, we derived the CH3CN/13CH3CN ratio to be 89.2 ± 7.0 and the CH3CN/CH313CN ratio to be 91.2 ± 6.0, in agreement with the 12C/13C ratio in Titan’s methane and other solar system species. We found the 14N/15N isotopic ratio to be 68.9 ± 4.2, consistent with previously derived values for HCN and HC3N, confirming an enhanced 15N abundance in Titan’s nitriles compared with the bulk atmospheric N2 value of 14N/15N = 168, in agreement with chemical models incorporating isotope-selective photodissociation of N2 at high altitudes.The Effects of Kinematic Magnetohydrodynamics on the Atmospheric Circulation of Eccentric Hot Jupiters
The Astrophysical Journal American Astronomical Society 984:1 (2025) 90
Escaping Helium and a Highly Muted Spectrum Suggest a Metal-Enriched Atmosphere on Sub-Neptune GJ3090b from JWST Transit Spectroscopy
(2025)
A Moderate Albedo from Reflecting Aerosols on the Dayside of WASP-80 b Revealed by JWST/NIRISS Eclipse Spectroscopy
Astronomical Journal American Astronomical Society 169:5 (2025) 277