A Possible Metal-dominated Atmosphere below the Thick Aerosols of GJ 1214 b Suggested by Its JWST Panchromatic Transmission Spectrum

The Astrophysical Journal Letters American Astronomical Society 979:1 (2025) l7

Authors:

Kazumasa Ohno, Everett Schlawin, Taylor J Bell, Matthew M Murphy, Thomas G Beatty, Luis Welbanks, Thomas P Greene, Jonathan J Fortney, Vivien Parmentier, Isaac R Edelman, Nishil Mehta, Marcia J Rieke

Improved Constraints on the Vertical Profile of CH4 at Jupiter’s Mid- to High Latitudes, Using IRTF-TEXES and SOFIA-EXES Spectroscopy

The Planetary Science Journal American Astronomical Society 6:1 (2025) 15-15

Authors:

James A Sinclair, Thomas K Greathouse, Rohini S Giles, Matthew Richter, Maisie Rashman, Curtis de Witt, Julianne Moses, Vincent Hue, Pablo Rodríguez-Ovalle, Thierry Fouchet, Ananyo Bhattacharya, Bilal Benmahi, Glenn S Orton, Leigh N Fletcher, Patrick GJ Irwin

Abstract:

<jats:title>Abstract</jats:title> <jats:p>We present radiative transfer analyses of IRTF-TEXES and SOFIA-EXES mid-infrared spectra of Jupiter's mid- to high latitudes recorded between 2019 April 16 and 2023 July 20. The spectra were inverted across a photochemical model grid of varying eddy diffusion coefficient profiles, and the quality of fit of the synthetic spectra to the observed was used to constrain the CH<jats:sub>4</jats:sub> homopause level. For a subset of latitudes/dates, we find that the CH<jats:sub>4</jats:sub> homopause level is elevated in the region enclosed inside of, or magnetospherically poleward of, the northern ultraviolet main auroral emissions (MAEs) in comparison to the region outside or equatorward of the MAE. For example, using SOFIA-EXES results on 2021 June 10, we derived a CH<jats:sub>4</jats:sub> homopause level of log(<jats:italic>p</jats:italic> <jats:sub>H</jats:sub>(nbar)) = 1.54<jats:inline-formula> <jats:tex-math> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow/> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.69</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.51</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> </jats:inline-formula> or <jats:italic>z</jats:italic> <jats:sub>H</jats:sub> = 453<jats:inline-formula> <jats:tex-math> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow/> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>76</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>128</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> </jats:inline-formula> km above 1 bar poleward of the northern MAE at 68<jats:sup>∘</jats:sup>N compared to a lower limit of log(<jats:italic>p</jats:italic> <jats:sub>H</jats:sub>) &gt; 2.43 and upper limit of <jats:italic>z</jats:italic> <jats:sub>H</jats:sub> &lt; 322 km derived equatorward of the northern MAE. We therefore conclude that the region poleward of the northern MAE is, at times, subject to enhanced vertical transport resulting from auroral energy deposition. The exact mechanisms responsible for the enhanced vertical transport in Jupiter's auroral regions are uncertain: time-dependent circulation modeling of Jupiter's polar atmosphere is required to better understand this phenomenon. Poleward of the southern MAE, derived homopause levels agreed within uncertainty with those at equatorward locations. However, we consider this result a spatial sampling artifact rather than concluding that the southern auroral region is not subject to enhanced vertical transport.</jats:p>

Promise and Peril: Stellar Contamination and Strict Limits on the Atmosphere Composition of TRAPPIST-1 c from JWST NIRISS Transmission Spectra

The Astrophysical Journal Letters American Astronomical Society 979:1 (2025) l5

Authors:

Michael Radica, Caroline Piaulet-Ghorayeb, Jake Taylor, Louis-Philippe Coulombe, Björn Benneke, Loic Albert, Étienne Artigau, Nicolas B Cowan, René Doyon, David Lafrenière, Alexandrine L’Heureux, Olivia Lim

Reliable Detections of Atmospheres on Rocky Exoplanets with Photometric JWST Phase Curves

The Astrophysical Journal Letters American Astronomical Society 978:2 (2025) l40

Authors:

Mark Hammond, Claire Marie Guimond, Tim Lichtenberg, Harrison Nicholls, Chloe Fisher, Rafael Luque, Tobias G Meier, Jake Taylor, Quentin Changeat, Lisa Dang, Hamish CFC Hay, Oliver Herbort, Johanna Teske

Methane precipitation in ice giant atmospheres

Astronomy & Astrophysics EDP Sciences (2025)

Authors:

D Toledo, Pascal Rannou, Patrick Irwin, Bruno de Batz de Trenquelléon, Michael Roman, Victor Apestigue, Ignacio Arruego, Margarita Yela

Abstract:

<jats:p>Voyager-2 radio occultation measurements have revealed changes in the atmospheric refractivity within a 2-4 km layer near the 1.2-bar level in Uranus and the 1.6-bar level in Neptune. These changes were attributed to the presence of a methane cloud, consistent with the observation that methane concentration decreases with altitude above these levels, closely following the saturation vapor pressure. However, no clear spectral signatures of such a cloud have been detected thus far in the spectra acquired from both planets. We examine methane cloud properties in the atmospheres of the ice giants, including vertical ice distribution, droplet radius, precipitation rates, timescales, and total opacity, employing microphysical simulations under different scenarios. We used a one-dimensional (1D) cloud microphysical model to simulate the formation of methane clouds in the ice giants. The simulations include the processes of nucleation, condensation, coagulation, evaporation, and precipitation, with vertical mixing simulated using an eddy-diffusion profile (K_eddy). Our simulations show cloud bases close to 1.24 bars in Uranus and 1.64 bars in Neptune, with droplets up to 100 μm causing high settling velocities and precipitation rates (∼370 mm per Earth year). The high settling velocities limit the total cloud opacity, yielding values at 0.8 μm of ∼0.19 for Uranus and ∼0.35 for Neptune, using K_ eddy = 0.5 m^2 s^-1 and a deep methane mole fraction (μ_CH_4) of 0.04. In addition, lower K_ eddy or μ_CH_4 values result in smaller opacities. Methane supersaturation is promptly removed by condensation, controlling the decline in μ_CH_4 with altitude in the troposphere. However, the high settling velocities prevent the formation of a permanent thick cloud. Stratospheric hazes made of ethane or acetylene ice are expected to evaporate completely before reaching the methane condensation level. Since hazes are required for methane heterogeneous nucleation, this suggests either a change in the solid phase properties of the haze particles, inhibiting evaporation, or the presence of photochemical hazes.</jats:p>