Investigating the role of 4-tert butylpyridine in perovskite solar cells
Advanced Energy Materials Wiley 7:1 (2016) 1601079
Abstract:
The majority of hole‐transporting layers used in n‐i‐p perovskite solar cells contain 4‐tert butylpyridine (tBP). High power‐conversion efficiencies and, in particular, good steady‐state performance appears to be contingent on the inclusion of this additive. On the quest to improve the steady state efficiencies of the carbon nanotube‐based hole‐transporter system, this study has found that the presence of tBP results in an extraordinary improvement in the performance of these devices. By deconstructing a prototypical device and investigating the effect of tBP on each individual layer, the results of this study indicate that this performance enhancement must be due to a direct chemical interaction between tBP and the perovskite material. This study proposes that tBP serves to p‐dope the perovskite layer and investigates this theory with poling and work function measurements.Efficient perovskite solar cells by metal ion doping
ENERGY & ENVIRONMENTAL SCIENCE 9:9 (2016) 2892-2901
Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells
Advanced Energy Materials 6:8 (2016) 1502458
Abstract:
Highest reported efficiency cesium lead halide perovskite solar cells are realized by tuning the bandgap and stabilizing the black perovskite phase at lower temperatures. CsPbI2Br is employed in a planar architecture device resulting in 9.8% power conversion efficiency and over 5% stabilized power output. Offering substantially enhanced thermal stability over their organic based counterparts, these results show that all-inorganic perovskites can represent a promising next step for photovoltaic materials.Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells.
ACS applied materials & interfaces 8:9 (2016) 5981-5989
Abstract:
Solar cells based on organic-inorganic perovskite semiconductor materials have recently made rapid improvements in performance, with the best cells performing at over 20% efficiency. With such rapid progress, questions such as cost and solar cell stability are becoming increasingly important to address if this new technology is to reach commercial deployment. The moisture sensitivity of commonly used organic-inorganic metal halide perovskites has especially raised concerns. Here, we demonstrate that the hygroscopic lithium salt commonly used as a dopant for the hole transport material in perovskite solar cells makes the top layer of the devices hydrophilic and causes the solar cells to rapidly degrade in the presence of moisture. By using novel, low cost, and hydrophobic hole transporters in conjunction with a doping method incorporating a preoxidized salt of the respective hole transporters, we are able to prepare efficient perovskite solar cells with greatly enhanced water resistance.Formation dynamics of CH3NH3PbI3 Perovskite following two-step layer deposition
Journal of physical chemistry letters American Chemical Society 7:1 (2016) 96-102