Impact of residual triphenylphosphine oxide on the crystallization of vapor-deposited metal halide perovskite films

Journal of Vacuum Science & Technology B Nanotechnology and Microelectronics Materials Processing Measurement and Phenomena American Vacuum Society 44:1 (2026) 012203

Authors:

Sarah J Scripps, Siyu Yan, Qimu Yuan, Laura M Herz, Nakita K Noel, Michael B Johnston

Abstract:

Thermal evaporation is an industrially compatible technique for fabricating metal halide perovskite thin films, without the requirement for hazardous solvents. It offers precise control over film thickness and is a good candidate for large-scale production of commercial optoelectronic metal halide perovskite devices, such as solar cells. The use of additives to passivate electronic defects in solution-processed metal halide perovskite has led to dramatic increases in device performance. However, there are a few reports of vapor-deposited films with coevaporated passivating agents. Triphenylphosphine oxide (TPPO) has been used as an effective surface passivating agent in solution-processed metal halide perovskite films. It is a promising candidate passivating agent for coevaporation, where it is beginning to be used with encouraging results. However, here we report that triphenylphosphine oxide is incompatible with thermal deposition in the same deposition chamber. Such TPPO remnants are found to result in severe suppression of the perovskite phase, long-range crystalline ordering, and optical absorption of lead halide perovskite films subsequently deposited in the same chamber. TPPO contamination persists even through repeated baking cycles, with the reduction of the contaminant to acceptable levels requiring vacuum chamber dismantling and manual cleaning. We conclude that TPPO should not be coevaporated in order to prevent the contamination of future batches.

Lead-free perovskites and derivatives for photogeneration: a roadmap to sustainable approaches for photovoltaics and photo(electro)catalysis

Journal of Physics Energy IOP Publishing (2025)

Authors:

Isabella Poli, Teresa Gatti, Yan Li, Antonio Agresti, Luigi Angelo Castriotta, Francesca De Rossi, Sudhanshu Shukla, Tom Aernouts, Salvador Eslava, Lorenzo Malavasi, Edoardo Mosconi, Joel van Embden, Dhiman Kalita, Enrico Della Gaspera, G Krishnamurthy Grandhi, Krishnaiah Mokurala, Paola Vivo, Nakita K Noel, Jay Patel, Marcello Righetto, Paola Ragonese, Sandheep Ravishankar, Chiara Maurizio, Francesco Lamberti, Kassio PS Zanoni, Michele Sessolo, Monica Morales-Masis, Ribhu Bhatia, Simone Argiolas, Andrea Le Donne, Alessandro Mattoni, Simone Meloni, Jenny Baker, Rosario Vidal

Abstract:

Abstract This roadmap provides a comprehensive overview of the latest advancements in lead-free perovskite materials for photovoltaic (PV) and photoelectrochemical (PEC)/photocatalytic (PC) applications. It highlights the urgent need for sustainable energy solutions, emphasizing the role of lead-free perovskites in addressing challenges related to toxicity, scalability, and efficiency. The roadmap is designed to guide the reader from application-driven perspectives to fundamental materials insights, characterization techniques, fabrication strategies and overreaching sustainability considerations. The document explores key material families, including tin-, bismuth-, antimony-, and copper-based perovskites, detailing their optoelectronic properties, fabrication techniques, and application potential. Special attention is given to advanced characterization methods, green processing strategies, the integration of artificial intelligence and machine learning for material design and optimization and lifecycle impact assessments to ensure environmental sustainability. By bringing together insights from global research communities, this roadmap serves as a strategic guide for advancing lead-free perovskite technology, fostering interdisciplinary collaboration, and accelerating the transition to next-generation solar energy solutions.

Tailoring a Lead-Free Organic–Inorganic Halobismuthate for Large Piezoelectric Effect

Journal of the American Chemical Society American Chemical Society 147:49 (2025) 45366-45376

Authors:

Esther YH Hung, Benjamin M Gallant, Robert Harniman, Jakob Möbs, Santanu Saha, Khaled Kaja, Charles Godfrey, Shrestha Banerjee, Nikolaos Famakidis, Harish Bhaskaran, Marina R Filip, Paolo Radaelli, Nakita K Noel, Dominik J Kubicki, Harry C Sansom, Henry J Snaith

Abstract:

Molecular piezoelectrics are a potentially disruptive technology, enabling a new generation of self-powered electronics that are flexible, high performing, and inherently low in toxicity. Although significant efforts have been made toward understanding their structural design by targeted manipulation of phase transition behavior, the resulting achievable piezoresponse has remained limited. In this work, we use a low-symmetry, zero-dimensional (0D) inorganic framework alongside a carefully selected ‘quasi-spherical’ organic cation to manipulate organic–inorganic interactions and thus form the hybrid, piezoelectric material [(CH3)3NCH2I]3Bi2I9. Using variable–temperature single crystal X-ray diffraction and solid-state nuclear magnetic resonance spectroscopy, we demonstrate that this material simultaneously exhibits an order–disorder and displacive symmetry-breaking phase transition. This phase transition is mediated by halogen bonding between the organic and inorganic frameworks and results in a large piezoelectric response, d 33 = 161.5 pm/V. This value represents a 4-fold improvement on previously reported halobismuthate piezoelectrics and is comparable to those of commercial inorganic piezoelectrics, thus offering a new pathway toward low-cost, low-toxicity mechanical energy harvesting and actuating devices.

Impact of Charge Transport Layers on the Structural and Optoelectronic Properties of Coevaporated Cu 2 AgBiI 6

ACS Applied Materials & Interfaces American Chemical Society 17:28 (2025) 40363-40374

Authors:

Jae Eun Lee, Marcello Righetto, Benjamin WJ Putland, Siyu Yan, Joshua RS Lilly, Snigdha Lal, Heon Jin, Nakita K Noel, Michael B Johnston, Henry J Snaith, Laura M Herz

Abstract:

The copper–silver–bismuth–iodide compound Cu2AgBiI6 has emerged as a promising lead-free and environmentally friendly alternative to wide-bandgap lead-halide perovskites for applications in multijunction solar cells. Despite its promising optoelectronic properties, the efficiency of Cu2AgBiI6 is still severely limited by poor charge collection. Here, we investigate the impact of commonly used charge transport layers (CTLs), including poly­[bis­(4-phenyl)­(2,4,6-trimethylphenyl)­amine] (PTAA), CuI, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), and SnO2, on the structural and optoelectronic properties of coevaporated Cu2AgBiI6 thin films. We reveal that while organic transport layers, such as PTAA and PCBM, form a relatively benign interface, inorganic transport layers, such as CuI and SnO2, induce the formation of unintended impurity phases within the CuI–AgI–BiI3 solid solution space, significantly influencing structural and optoelectronic properties. We demonstrate that identification of these impurity phases requires careful cross-validation combining absorption, X-ray diffraction and THz photoconductivity spectroscopy because their structural and optoelectronic properties are very similar to those of Cu2AgBiI6. Our findings highlight the critical role of CTLs in determining the structural and optoelectronic properties of coevaporated copper–silver–bismuth–iodide thin films and underscore the need for advanced interface engineering to optimize device efficiency and reproducibility.

Inter‐Layer Diffusion of Excitations in 2D Perovskites Revealed by Photoluminescence Reabsorption

Advanced Functional Materials Wiley (2025) 2421817

Authors:

Jiaxing Du, Marcello Righetto, Manuel Kober‐Czerny, Siyu Yan, Karim A Elmestekawy, Henry J Snaith, Michael B Johnston, Laura M Herz

Abstract:

2D lead halide perovskites (2DPs) offer chemical compatibility with 3D perovskites and enhanced stability, which are attractive for applications in photovoltaic and light‐emitting devices. However, such lowered structural dimensionality causes increased excitonic effects and highly anisotropic charge‐carrier transport. Determining the diffusivity of excitations, in particular for out‐of‐plane or inter‐layer transport, is therefore crucial, yet challenging to achieve. Here, an effective method is demonstrated for monitoring inter‐layer diffusion of photoexcitations in (PEA)2PbI4 thin films by tracking time‐dependent changes in photoluminescence spectra induced by photon reabsorption effects. Selective photoexcitation from either substrate‐ or air‐side of the films reveals differences in diffusion dynamics encountered through the film profile. Time‐dependent diffusion coefficients are extracted from spectral dynamics through a 1D diffusion model coupled with an interference correction for refractive index variations arising from the strong excitonic resonance of 2DPs. Such analysis, together with structural probes, shows that minute misalignment of 2DPs planes occurs at distances far from the substrate, where efficient in‐plane transport consequently overshadows the less efficient out‐of‐plane transport in the direction perpendicular to the substrate. Through detailed analysis, a low out‐of‐plane excitation diffusion coefficient of (0.26 ± 0.03) ×10−4 cm2 s−1 is determined, consistent with a diffusion anisotropy of ≈4 orders of magnitude.