String Photini at the LHC
ArXiv 0909.5440 (2009)
Abstract:
String theories with topologically complex compactification manifolds suggest the simultaneous presence of many unbroken U(1)'s without any light matter charged under them. The gauge bosons associated with these U(1)'s do not have direct observational consequences. However, in the presence of low energy supersymmetry the gauge fermions associated with these U(1)'s, the "photini", mix with the Bino and extend the MSSM neutralino sector. This leads to novel signatures at the LHC. The lightest ordinary supersymmetric particle (LOSP) can decay to any one of these photini. In turn, photini may transition into each other, leading to high lepton and jet multiplicities. Both the LOSP decays and inter-photini transitions can lead to displaced vertices. When the interphotini decays happen outside the detector, the cascades can result in different photini escaping the detector leading to multiple reconstructed masses for the invisible particle. If the LOSP is charged, it stops in the detector and decays out-of-time to photini, with the possibility that the produced final photini vary from event to event. Observation of a plenitude of photini at the LHC would be evidence that we live in a string vacuum with a topologically rich compactification manifold.On cosmic ray acceleration in supernova remnants and the FERMI/PAMELA data
ArXiv 0909.4060 (2009)
Abstract:
We discuss recent observations of high energy cosmic ray positrons and electrons in the context of hadronic interactions in supernova remnants, the suspected accelerators of galactic cosmic rays. Diffusive shock acceleration can harden the energy spectrum of secondary positrons relative to that of the primary protons (and electrons) and thus explain the rise in the positron fraction observed by PAMELA above 10 GeV. We normalize the hadronic interaction rate by holding pion decay to be responsible for the gamma-rays detected by HESS from some SNRs. By simulating the spatial and temporal distribution of SNRs in the Galaxy according to their known statistics, we are able to then fit the electron (plus positron) energy spectrum measured by Fermi. It appears that IceCube has good prospects for detecting the hadronic neutrino fluxes expected from nearby SNRs.On cosmic ray acceleration in supernova remnants and the FERMI/PAMELA data
(2009)
On the spectral dimension of causal triangulations
ArXiv 0908.3643 (2009)