Ultrafast excited-state localization in Cs2AgBiBr6 double perovskite

Journal of Physical Chemistry Letters American Chemical Society 12:13 (2021) 3352-3360

Authors:

Adam Wright, Leonardo RV Buizza, Kimberley Savill, Giulia Longo, Henry Snaith, Michael Johnston, Laura Herz

Abstract:

Cs2AgBiBr6 is a promising metal halide double perovskite offering the possibility of efficient photovoltaic devices based on lead-free materials. Here, we report on the evolution of photoexcited charge carriers in Cs2AgBiBr6 using a combination of temperature-dependent photoluminescence, absorption and optical pump–terahertz probe spectroscopy. We observe rapid decays in terahertz photoconductivity transients that reveal an ultrafast, barrier-free localization of free carriers on the time scale of 1.0 ps to an intrinsic small polaronic state. While the initially photogenerated delocalized charge carriers show bandlike transport, the self-trapped, small polaronic state exhibits temperature-activated mobilities, allowing the mobilities of both to still exceed 1 cm2 V–1 s–1 at room temperature. Self-trapped charge carriers subsequently diffuse to color centers, causing broad emission that is strongly red-shifted from a direct band edge whose band gap and associated exciton binding energy shrink with increasing temperature in a correlated manner. Overall, our observations suggest that strong electron–phonon coupling in this material induces rapid charge-carrier localization.

Unveiling the ultrafast optoelectronic properties of 3D Dirac semi-metal Cd3As2

Proceedings of the 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2020) IEEE (2021)

Authors:

Jessica L Boland, Chelsea Q Xia, Djamshid A Damry, Piet Schoenherr, Laura M Herz, Thorsten Hesjedal, Michael B Johnston

Abstract:

We employ ultrafast optical-pump terahertz-probe spectroscopy and ultrafast THz emission spectroscopy to investigate the ultrafast charge carrier dynamics in the 3D Dirac semi-metal CdAs. We extract the temperature-dependent electron mobility (16,000cmVs at 5K) for CdAs nanowire ensemble. We also demonstrate strong THz emission from both CdAs single crystal and nanowires, whose polarity depends strongly on incident angle and pump polarisation.

Highly absorbing lead-free semiconductor Cu2AgBiI6 for photovoltaic applications from the quaternary CuI-AgI-BiI3 phase space

Journal of the American Chemical Society American Chemical Society 143:10 (2021) 3983-3992

Authors:

Harry C Sansom, Giulia Longo, Adam D Wright, Leonardo RV Buizza, Suhas Mahesh, Bernard Wenger, Marco Zanella, Mojtaba Abdi-Jalebi, Michael J Pitcher, Matthew S Dyer, Troy D Manning, Richard H Friend, Laura M Herz, Henry J Snaith, John B Claridge, Matthew J Rosseinsky

Abstract:

Since the emergence of lead halide perovskites for photovoltaic research, there has been mounting effort in the search for alternative compounds with improved or complementary physical, chemical, or optoelectronic properties. Here, we report the discovery of Cu2AgBiI6: a stable, inorganic, lead-free wide-band-gap semiconductor, well suited for use in lead-free tandem photovoltaics. We measure a very high absorption coefficient of 1.0 × 105 cm–1 near the absorption onset, several times that of CH3NH3PbI3. Solution-processed Cu2AgBiI6 thin films show a direct band gap of 2.06(1) eV, an exciton binding energy of 25 meV, a substantial charge-carrier mobility (1.7 cm2 V–1 s–1), a long photoluminescence lifetime (33 ns), and a relatively small Stokes shift between absorption and emission. Crucially, we solve the structure of the first quaternary compound in the phase space among CuI, AgI and BiI3. The structure includes both tetrahedral and octahedral species which are open to compositional tuning and chemical substitution to further enhance properties. Since the proposed double-perovskite Cs2AgBiI6 thin films have not been synthesized to date, Cu2AgBiI6 is a valuable example of a stable Ag+/Bi3+ octahedral motif in a close-packed iodide sublattice that is accessed via the enhanced chemical diversity of the quaternary phase space.

Crystallization of CsPbBr3 single crystals in water for X-ray detection.

Nature communications 12:1 (2021) 1531

Authors:

Jiali Peng, Chelsea Q Xia, Yalun Xu, Ruiming Li, Lihao Cui, Jack K Clegg, Laura M Herz, Michael B Johnston, Qianqian Lin

Abstract:

Metal halide perovskites have fascinated the research community over the past decade, and demonstrated unprecedented success in optoelectronics. In particular, perovskite single crystals have emerged as promising candidates for ionization radiation detection, due to the excellent opto-electronic properties. However, most of the reported crystals are grown in organic solvents and require high temperature. In this work, we develop a low-temperature crystallization strategy to grow CsPbBr3 perovskite single crystals in water. Then, we carefully investigate the structure and optoelectronic properties of the crystals obtained, and compare them with CsPbBr3 crystals grown in dimethyl sulfoxide. Interestingly, the water grown crystals exhibit a distinct crystal habit, superior charge transport properties and better stability in air. We also fabricate X-ray detectors based on the CsPbBr3 crystals, and systematically characterize their device performance. The crystals grown in water demonstrate great potential for X-ray imaging with enhanced performance metrics.

Incorporating Electrochemical Halide Oxidation into Drift‐Diffusion Models to Explain Performance Losses in Perovskite Solar Cells under Prolonged Reverse Bias

Advanced Energy Materials Wiley 11:10 (2021)

Authors:

Luca Bertoluzzi, Jay B Patel, Kevin A Bush, Caleb C Boyd, Ross A Kerner, Brian C O'Regan, Michael D McGehee