A general three-component polarimetric SAR interferometry target decomposition

Advances in Space Research Elsevier 74:11 (2024) 5428-5437

Authors:

Shuaifeng Hu, Qinghua Xie, J David Ballester-Berman, Qi Dou, Xing Peng, Youjun Wang, Haiqiang Fu, Jianjun Zhu

Corrigendum to “Unlocking the potential of antisolvent-free perovskite solar cells: Modulating crystallization and intermediates through a binary volatile additive strategy” [Nano Energy 124 (2024) 109487]

Nano Energy Elsevier 131 (2024) 110198

Authors:

Bo Zhou, Pei Zhao, Junxue Guo, Yu Qiao, Shuaifeng Hu, Xin Guo, Jiewei Liu, Can Li

Diamine Surface Passivation and Post-Annealing Enhance Performance of Silicon-Perovskite Tandem Solar Cells

(2024)

Authors:

Margherita Taddei, Hannah Contreras, Hai-Nam Doan, Declan P McCarthy, Seongrok Seo, Robert JE Westbrook, Daniel J Graham, Kunal Datta, Perrine Carroy, Delfina Muñoz, Juan-Pablo Correa-Baena, Stephen Barlow, Seth R Marder, Joel A Smith, Henry J Snaith, David S Ginger

Impact of Indium Doping in Lead-Free (CH3NH3)3Bi2–x In x I9 Perovskite Photovoltaics for Indoor and Outdoor Light Harvesting

ACS Applied Electronic Materials American Chemical Society (ACS) 6:11 (2024) 8360-8368

Authors:

Ramesh Kumar, Hairui Liu, Seyed Ali Nabavi, Moses S Anyebe, Suhas Mahesh, Henry Snaith, Monojit Bag, Sagar M Jain

A green solvent enables precursor phase engineering of stable formamidinium lead triiodide perovskite solar cells

Nature Communications Nature Research 15:1 (2024) 10110

Authors:

Benjamin M Gallant, Philippe Holzhey, Joel A Smith, Saqlain Choudhary, Karim A Elmestekawy, Pietro Caprioglio, Igal Levine, Alexandra A Sheader, Esther Y-H Hung, Fengning Yang, Daniel TW Toolan, Rachel C Kilbride, Karl-Augustin Zaininger, James M Ball, M Greyson Christoforo, Nakita K Noel, Laura M Herz, Dominik J Kubicki, Henry J Snaith

Abstract:

Perovskite solar cells (PSCs) offer an efficient, inexpensive alternative to current photovoltaic technologies, with the potential for manufacture via high-throughput coating methods. However, challenges for commercial-scale solution-processing of metal-halide perovskites include the use of harmful solvents, the expense of maintaining controlled atmospheric conditions, and the inherent instabilities of PSCs under operation. Here, we address these challenges by introducing a high volatility, low toxicity, biorenewable solvent system to fabricate a range of 2D perovskites, which we use as highly effective precursor phases for subsequent transformation to α-formamidinium lead triiodide (α-FAPbI3), fully processed under ambient conditions. PSCs utilising our α-FAPbI3 reproducibly show remarkable stability under illumination and elevated temperature (ISOS-L-2) and “damp heat” (ISOS-D-3) stressing, surpassing other state-of-the-art perovskite compositions. We determine that this enhancement is a consequence of the 2D precursor phase crystallisation route, which simultaneously avoids retention of residual low-volatility solvents (such as DMF and DMSO) and reduces the rate of degradation of FA+ in the material. Our findings highlight both the critical role of the initial crystallisation process in determining the operational stability of perovskite materials, and that neat FA+-based perovskites can be competitively stable despite the inherent metastability of the α-phase.