Impact of Indium Doping in Lead-Free (CH3NH3)3Bi2–x In x I9 Perovskite Photovoltaics for Indoor and Outdoor Light Harvesting

ACS Applied Electronic Materials American Chemical Society (ACS) 6:11 (2024) 8360-8368

Authors:

Ramesh Kumar, Hairui Liu, Seyed Ali Nabavi, Moses S Anyebe, Suhas Mahesh, Henry Snaith, Monojit Bag, Sagar M Jain

A green solvent enables precursor phase engineering of stable formamidinium lead triiodide perovskite solar cells

Nature Communications Nature Research 15:1 (2024) 10110

Authors:

Benjamin M Gallant, Philippe Holzhey, Joel A Smith, Saqlain Choudhary, Karim A Elmestekawy, Pietro Caprioglio, Igal Levine, Alexandra A Sheader, Esther Y-H Hung, Fengning Yang, Daniel TW Toolan, Rachel C Kilbride, Karl-Augustin Zaininger, James M Ball, M Greyson Christoforo, Nakita K Noel, Laura M Herz, Dominik J Kubicki, Henry J Snaith

Abstract:

Perovskite solar cells (PSCs) offer an efficient, inexpensive alternative to current photovoltaic technologies, with the potential for manufacture via high-throughput coating methods. However, challenges for commercial-scale solution-processing of metal-halide perovskites include the use of harmful solvents, the expense of maintaining controlled atmospheric conditions, and the inherent instabilities of PSCs under operation. Here, we address these challenges by introducing a high volatility, low toxicity, biorenewable solvent system to fabricate a range of 2D perovskites, which we use as highly effective precursor phases for subsequent transformation to α-formamidinium lead triiodide (α-FAPbI3), fully processed under ambient conditions. PSCs utilising our α-FAPbI3 reproducibly show remarkable stability under illumination and elevated temperature (ISOS-L-2) and “damp heat” (ISOS-D-3) stressing, surpassing other state-of-the-art perovskite compositions. We determine that this enhancement is a consequence of the 2D precursor phase crystallisation route, which simultaneously avoids retention of residual low-volatility solvents (such as DMF and DMSO) and reduces the rate of degradation of FA+ in the material. Our findings highlight both the critical role of the initial crystallisation process in determining the operational stability of perovskite materials, and that neat FA+-based perovskites can be competitively stable despite the inherent metastability of the α-phase.

Impact of Ion Migration on the Performance and Stability of Perovskite‐Based Tandem Solar Cells

Advanced Energy Materials Wiley (2024)

Authors:

Sahil Shah, Fengjiu Yang, Eike Köhnen, Esma Ugur, Mark Khenkin, Jarla Thiesbrummel, Bor Li, Lucas Holte, Sebastian Berwig, Florian Scherler, Paria Forozi, Jonas Diekmann, Francisco Peña‐Camargo, Marko Remec, Nikhil Kalasariya, Erkan Aydin, Felix Lang, Henry Snaith, Dieter Neher, Stefaan De Wolf, Carolin Ulbrich, Steve Albrecht, Martin Stolterfoht

Diamine chelates for increased stability in mixed Sn–Pb and all-perovskite tandem solar cells

Nature Energy Springer Nature 9:11 (2024) 1388-1396

Authors:

Chongwen Li, Lei Chen, Fangyuan Jiang, Zhaoning Song, Xiaoming Wang, Adam Balvanz, Esma Ugur, Yuan Liu, Cheng Liu, Aidan Maxwell, Hao Chen, Yanjiang Liu, Zaiwei Wang, Pan Xia, You Li, Sheng Fu, Nannan Sun, Corey R Grice, Xuefei Wu, Zachary Fink, Qin Hu, Lewei Zeng, Euidae Jung, Junke Wang, So Min Park, Deying Luo, Cailing Chen, Jie Shen, Yu Han, Carlo Andrea Riccardo Perini, Juan-Pablo Correa-Baena, Zheng-Hong Lu, Thomas P Russell, Stefaan De Wolf, Mercouri G Kanatzidis, David S Ginger, Bin Chen, Yanfa Yan, Edward H Sargent

Coherent growth of high-Miller-index facets enhances perovskite solar cells.

Nature 635:8040 (2024) 874-881

Authors:

Shunde Li, Yun Xiao, Rui Su, Weidong Xu, Deying Luo, Pengru Huang, Linjie Dai, Peng Chen, Pietro Caprioglio, Karim A Elmestekawy, Milos Dubajic, Cullen Chosy, Juntao Hu, Irfan Habib, Akash Dasgupta, Dengyang Guo, Yorrick Boeije, Szymon J Zelewski, Zhangyuchang Lu, Tianyu Huang, Qiuyang Li, Jingmin Wang, Haoming Yan, Hao-Hsin Chen, Chunsheng Li, Barnaby AI Lewis, Dengke Wang, Jiang Wu, Lichen Zhao, Bing Han, Jianpu Wang, Laura M Herz, James R Durrant, Kostya S Novoselov, Zheng-Hong Lu, Qihuang Gong, Samuel D Stranks, Henry J Snaith, Rui Zhu

Abstract:

Obtaining micron-thick perovskite films of high quality is key to realizing efficient and stable positive (p)-intrinsic (i)-negative (n) perovskite solar cells1,2, but it remains a challenge. Here we report an effective method for producing high-quality, micron-thick formamidinium-based perovskite films by forming coherent grain boundaries, in which high-Miller-index-oriented grains grow on the low-Miller-index-oriented grains in a stabilized atmosphere. The resulting micron-thick perovskite films, with enhanced grain boundaries and grains, showed stable material properties and outstanding optoelectronic performances. The small-area solar cells achieved efficiencies of 26.1%. The 1-cm2 devices and 5 cm × 5 cm mini-modules delivered efficiencies of 24.3% and 21.4%, respectively. The devices processed in a stabilized atmosphere presented a high reproducibility across all four seasons. The encapsulated devices exhibited superior long-term stability under both light and thermal stressors in ambient air.