Probing ionic conductivity and electric field screening in perovskite solar cells: a novel exploration through ion drift currents.

Energy & environmental science 18:3 (2025) 1385-1397

Authors:

Matthias Diethelm, Tino Lukas, Joel Smith, Akash Dasgupta, Pietro Caprioglio, Moritz Futscher, Roland Hany, Henry J Snaith

Abstract:

It is widely accepted that mobile ions are responsible for the slow electronic responses observed in metal halide perovskite-based optoelectronic devices, and strongly influence long-term operational stability. Electrical characterisation methods mostly observe complex indirect effects of ions on bulk/interface recombination, struggle to quantify the ion density and mobility, and are typically not able to fully quantify the influence of the ions upon the bulk and interfacial electric fields. We analyse the bias-assisted charge extraction (BACE) method for the case of a screened bulk electric field, and introduce a new characterisation method based on BACE, termed ion drift BACE. We reveal that the initial current density and current decay dynamics depend on the ion conductivity, which is the product of ion density and mobility. This means that for an unknown high ion density, typical in perovskite solar absorber layers, the mobility cannot be directly obtained from BACE measurements. We derive an analytical model to illustrate the relation between current density, conductivity and bulk field screening, supported by drift-diffusion simulations. By measuring the ion density independently with impedance spectroscopy, we show how the ion mobility can be derived from the BACE ion conductivity. We highlight important differences between the low- and high-ion density cases, which reveal whether the bulk electric field is fully screened or not. Our work clarifies the complex ion-related processes occurring within perovskite solar cells and gives new insight into the operational principles of halide perovskite devices as mixed ionic-electronic conductors.

Determining Parameters of Metal-Halide Perovskites Using Photoluminescence with Bayesian Inference

PRX Energy American Physical Society (APS) 4:1 (2025) 13001

Authors:

Manuel Kober-Czerny, Akash Dasgupta, Seongrok Seo, Florine M Rombach, David P McMeekin, Heon Jin, Henry J Snaith

Abstract:

<jats:p>In this work, we demonstrate that time-resolved photoluminescence data of metal halide perovskites can be effectively evaluated by combining Bayesian inference with a Markov-chain Monte-Carlo algorithm and a physical model. This approach enables us to infer a high number of parameters that govern the performance of metal halide perovskite-based devices, alongside the probability distributions of those parameters, as well as correlations among all parameters. Via studying a set of halfstacks, comprising electron- and hole-transport materials contacting perovskite thin films, we determine surface recombination velocities at these interfaces with high precision. From the probability distributions of all inferred parameters, we can simulate intensity-dependent photoluminescence quantum efficiency and compare it to experimental data. Finally, we estimate mobility values for vertical charge-carrier transport, which is perpendicular to the plane of the substrate, for all samples using our approach. Since this mobility estimation is derived from charge-carrier diffusion over the length scale of the film thickness and in the vertical direction, it is highly relevant for transport in photovoltaic and light-emitting devices. Our approach of coupling spectroscopic measurements with advanced computational analysis will help speed up scientific research in the field of optoelectronic materials and devices and exemplifies how carefully constructed computational algorithms can derive valuable plurality of information from simple datasets. We expect that our approach can be expanded to a variety of other analysis techniques and that our method will be applicable to other semiconductors.</jats:p> <jats:sec> <jats:title/> <jats:supplementary-material> <jats:permissions> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material> </jats:sec>

Determining material parameters of metal halide perovskites using time-resolved photoluminescence

PRX Energy American Physical Society 4:1 (2025) 013001

Authors:

Manuel Kober-Czerny, Akash Dasgupta, Seongrok Seo, Florine Rombach, David McMeekin, Heon Jin, Henry Snaith

Abstract:

In this work we demonstrate that time-resolved photoluminescence data of metal halide perovskites can be effectively evaluated by combining Bayesian inference with a Markov-Chain Monte-Carlo algorithm and a physical model. This approach enables us to infer a high number of parameters which govern the performance of metal halide perovskite-based devices, alongside the probability distributions of those parameters, as well as correlations among all parameters. Via studying a set of "half-stacks’‘, comprising electron and hole transport materials contacting perovskite thin-films, we determine surface recombination velocities at these interfaces with high precision. From the probability distributions of all inferred parameters, we can simulate intensity-dependent photoluminescence quantum efficiency and compare it to the experimental data. Finally, we estimate mobility values for the "vertical’’ charge carrier transport, that perpendicular to the plane of the substrate, for all samples using our approach. Since this mobility estimation is derived from charge carrier diffusion over the length-scale of the film thickness and in the vertical direction, it is highly relevant to transport in photovoltaic and light emitting devices. Our approach of coupling spectroscopic measurements with advanced, computational analysis will help speed up scientific research in the field of optoelectronic materials and devices and exemplifies how carefully constructed computational algorithms can derive valuable plurality of information from simple datasets. We expect that our approach will be expandable to a variety of other analysis techniques and that our method will be applicable to other semiconductors.

Performance and stability analysis of all-perovskite tandem photovoltaics in light-driven electrochemical water splitting.

Nature Communications Nature Research (part of Springer Nature) 16:1 (2025) 174-174

Authors:

Junke Wang, Bruno Branco, Willemijn HM Remmerswaal, Shuaifeng Hu, Nick RM Schipper, Valerio Zardetto, Laura Bellini, Nicolas Daub, Martijn M Wienk, Atsushi Wakamiya, Henry J Snaith, René AJ Janssen

Abstract:

All-perovskite tandem photovoltaics are a potentially cost-effective technology to power chemical fuel production, such as green hydrogen. However, their application is limited by deficits in open-circuit voltage and, more challengingly, poor operational stability of the photovoltaic cell. Here we report a laboratory-scale solar-assisted water-splitting system using an electrochemical flow cell and an all-perovskite tandem solar cell. We begin by treating the perovskite surface with a propane-1,3-diammonium iodide solution that reduces interface non-radiative recombination losses and achieves an open-circuit voltage above 90% of the detailed-balance limit for single-junction solar cells between the bandgap of 1.6-1.8 eV. Specifically, a high open-circuit voltage of 1.35 V and maximum power conversion efficiency of 19.9% are achieved at a 1.77 eV bandgap. This enables monolithic all-perovskite tandem solar cells with a 26.0% power conversion efficiency at 1 cm2 area and a pioneering photovoltaic-electrochemical system with a maximum solar-to-hydrogen efficiency of 17.8%. The system retains over 60% of its peak performance after operating for more than 180 h. We find that the performance loss is mainly due to the degradation of the photovoltaic component. We observe severe charge collection losses in the narrow-bandgap sub-cell that can be attributed to the interface degradation between the narrow-bandgap perovskite and the hole-transporting layer. Our study suggests that developing chemically stable absorbers and contact layers is critical for the applications of all-perovskite tandem photovoltaics.

Performance and stability analysis of all-perovskite tandem photovoltaics in light-driven electrochemical water splitting

Nature Communications Springer Nature 16:1 (2025) 174

Authors:

Junke Wang, Bruno Branco, Willemijn HM Remmerswaal, Shuaifeng Hu, Nick RM Schipper, Valerio Zardetto, Laura Bellini, Nicolas Daub, Martijn M Wienk, Atsushi Wakamiya, Henry J Snaith, René AJ Janssen

Abstract:

All-perovskite tandem photovoltaics are a potentially cost-effective technology to power chemical fuel production, such as green hydrogen. However, their application is limited by deficits in open-circuit voltage and, more challengingly, poor operational stability of the photovoltaic cell. Here we report a laboratory-scale solar-assisted water-splitting system using an electrochemical flow cell and an all-perovskite tandem solar cell. We begin by treating the perovskite surface with a propane-1,3-diammonium iodide solution that reduces interface non-radiative recombination losses and achieves an open-circuit voltage above 90% of the detailed-balance limit for single-junction solar cells between the bandgap of 1.6–1.8 eV. Specifically, a high open-circuit voltage of 1.35 V and maximum power conversion efficiency of 19.9% are achieved at a 1.77 eV bandgap. This enables monolithic all-perovskite tandem solar cells with a 26.0% power conversion efficiency at 1 cm2 area and a pioneering photovoltaic-electrochemical system with a maximum solar-to-hydrogen efficiency of 17.8%. The system retains over 60% of its peak performance after operating for more than 180 h. We find that the performance loss is mainly due to the degradation of the photovoltaic component. We observe severe charge collection losses in the narrow-bandgap sub-cell that can be attributed to the interface degradation between the narrow-bandgap perovskite and the hole-transporting layer. Our study suggests that developing chemically stable absorbers and contact layers is critical for the applications of all-perovskite tandem photovoltaics.