Electrochemical replication of self-assembled block copolymer nanostructures

Chapter in Electrochemical Nanofabrication: Principles and Applications: Second Edition, (2016) 59-111

Authors:

E Crossland, H Snaith, U Steiner

Abnormal resistivity-temperature characteristic in fluorite type Bi/K-substituted ceria ceramics

Journal of Materials Science: Materials in Electronics Springer Nature 27:6 (2016) 6419-6424

Authors:

Junke Wang, Hong Zhang, Zhiyuan Ma, Yu Zhang, Zhicheng Li

Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells.

ACS nano 10:6 (2016) 6029-6036

Authors:

Jongmin Choi, Seulki Song, Maximilian T Hörantner, Henry J Snaith, Taiho Park

Abstract:

An electron transporting layer (ETL) plays an important role in extracting electrons from a perovskite layer and blocking recombination between electrons in the fluorine-doped tin oxide (FTO) and holes in the perovskite layers, especially in planar perovskite solar cells. Dense TiO2 ETLs prepared by a solution-processed spin-coating method (S-TiO2) are mainly used in devices due to their ease of fabrication. Herein, we found that fatal morphological defects at the S-TiO2 interface due to a rough FTO surface, including an irregular film thickness, discontinuous areas, and poor physical contact between the S-TiO2 and the FTO layers, were inevitable and lowered the charge transport properties through the planar perovskite solar cells. The effects of the morphological defects were mitigated in this work using a TiO2 ETL produced from sputtering and anodization. This method produced a well-defined nanostructured TiO2 ETL with an excellent transmittance, single-crystalline properties, a uniform film thickness, a large effective area, and defect-free physical contact with a rough substrate that provided outstanding electron extraction and hole blocking in a planar perovskite solar cell. In planar perovskite devices, anodized TiO2 ETL (A-TiO2) increased the power conversion efficiency by 22% (from 12.5 to 15.2%), and the stabilized maximum power output efficiency increased by 44% (from 8.9 to 12.8%) compared with S-TiO2. This work highlights the importance of the ETL geometry for maximizing device performance and provides insights into achieving ideal ETL morphologies that remedy the drawbacks observed in conventional spin-coated ETLs.

Photo-induced halide redistribution in organic–inorganic perovskite films

Nature Communications Springer Nature 7 (2016) 11683

Authors:

DW deQuilettes, Wei Zhang, Victor Burlakov, DJ Graham, Tomas Leijtens, A Osherov, V Bulović, Henry Snaith, DS Ginger, SD Stranks

Abstract:

Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced 'brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. Our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance.

Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications

Scientific Reports Nature Publishing Group (2016)

Authors:

Chun Huang, Jin Zhang, Neil P Young, Henry J Snaith, Patrick S Grant

Abstract:

Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solidstate supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multilayered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices.