Perovskite-perovskite tandem photovoltaics with optimized bandgaps

(2016)

Authors:

Giles E Eperon, Tomas Leijtens, Kevin A Bush, Rohit Prasanna, Thomas Green, Jacob Tse-Wei Wang, David P McMeekin, George Volonakis, Rebecca L Milot, Richard May, Axel Palmstrom, Daniel J Slotcavage, Rebecca A Belisle, Jay B Patel, Elizabeth S Parrott, Rebecca J Sutton, Wen Ma, Farhad Moghadam, Bert Conings, Aslihan Babayigit, Hans-Gerd Boyen, Stacey Bent, Feliciano Giustino, Laura M Herz, Michael B Johnston, Michael D McGehee, Henry J Snaith

Identification and mitigation of a critical interfacial instability in perovskite solar cells employing copper thiocyanate hole-transporter

Advanced Materials Interfaces Wiley 3:22 (2016) 1600571

Authors:

Junjie Liu, SK Pathak, Nobuya Sakai, R Sheng, Sai Bai, Zhiping Wang, Henry Snaith

Abstract:

Metal halide perovskites have emerged as one of the most promising materials for photovoltaics (PVs), with power conversion efficiency of over 22% already demonstrated. In order to compete with traditional crystalline silicon PV, cost and stability are equally important issues that need to be considered besides efficiency. Copper thiocyanate (CuSCN) is an interesting candidate to be used as an inexpensive, thermally stable p-type charge conducting material in perovskite solar cells. Here, we report 13% efficient perovskite solar cells employing CuSCN as the hole-transport material. We compare the stability of cells employing CuSCN with those employing the archetypical organic hole-transporter 2,2′,7,7′-Tetrakis (N,N-di-p-methoxyphenyl-amine) 9,9′-Spirobifluorene (Spiro-OMeTAD), under elevated temperature in ambient atmosphere. Surprisingly, we find that the devices employing CuSCN degrade faster under elevated temperatures than the devices employing Spiro-OMeTAD. We discover that an interfacial degradation mechanism occurs at the heterojunction between the perovskite absorber and the CuSCN, even in a dry nitrogen atmosphere, identifying the presence of a critical instability. Interestingly, with the additional coating of the completed cells with a thin film of insulating poly(methyl methacrylate) (PMMA), functioning as a rudimentary “on-cell” encapsulation, we significantly alleviate this issue and deliver efficient perovskite solar cells which survive for more than 1000 hours at 85 °C in air with only 25% degradation in performance. Beyond identifying a critical area to address in order to enable CuSCN to be useful for long term operation in perovskite solar cells, our findings indicate that the role of the “encapsulant” is to both keep the environment out, and keep degradation products within the cell.

Optical Phonons in Methylammonium Lead Halide Perovskites and Implications for Charge Transport

(2016)

Authors:

Michael Sendner, Pabitra K Nayak, David A Egger, Sebastian Beck, Christian Müller, Bernd Epding, Wolfgang Kowalsky, Leeor Kronik, Henry J Snaith, Annemarie Pucci, Robert Lovrinčić

Synthesis and Investigation of the V‐shaped Tröger′s Base Derivatives as Hole‐transporting Materials

Chemistry - An Asian Journal Wiley 11:14 (2016) 2049-2056

Authors:

Titas Braukyla, Nobuya Sakai, Maryte Daskeviciene, Vygintas Jankauskas, Egidijus Kamarauskas, Tadas Malinauskas, Henry J Snaith, Vytautas Getautis

Efficient perovskite solar cells by metal ion doping

ENERGY & ENVIRONMENTAL SCIENCE 9:9 (2016) 2892-2901

Authors:

Jacob Tse-Wei Wang, Zhiping Wang, Sandeep Pathak, Wei Zhang, Dane W deQuilettes, Florencia Wisnivesky-Rocca-Rivarola, Jian Huang, Pabitra K Nayak, Jay B Patel, Hanis A Mohd Yusof, Yana Vaynzof, Rui Zhu, Ivan Ramirez, Jin Zhang, Caterina Ducati, Chris Grovenor, Michael B Johnston, David S Ginger, Robin J Nicholas, Henry J Snaith