Spatially resolved studies of the phases and morphology of methylammonium and formamidinium lead tri-halide perovskites

(2016)

Authors:

K Galkowski, A Mitioglu, A Surrente, Z Yang, DK Maude, P Kossacki, GE Eperon, JT-W Wang, HJ Snaith, P Plochocka, RJ Nicholas

Electrochemical replication of self-assembled block copolymer nanostructures

Chapter in Electrochemical Nanofabrication: Principles and Applications: Second Edition, (2016) 59-111

Authors:

E Crossland, H Snaith, U Steiner

Abnormal resistivity-temperature characteristic in fluorite type Bi/K-substituted ceria ceramics

Journal of Materials Science: Materials in Electronics Springer Nature 27:6 (2016) 6419-6424

Authors:

Junke Wang, Hong Zhang, Zhiyuan Ma, Yu Zhang, Zhicheng Li

Photo-induced halide redistribution in organic–inorganic perovskite films

Nature Communications Springer Nature 7 (2016) 11683

Authors:

DW deQuilettes, Wei Zhang, Victor Burlakov, DJ Graham, Tomas Leijtens, A Osherov, V Bulović, Henry Snaith, DS Ginger, SD Stranks

Abstract:

Organic-inorganic perovskites such as CH3NH3PbI3 are promising materials for a variety of optoelectronic applications, with certified power conversion efficiencies in solar cells already exceeding 21%. Nevertheless, state-of-the-art films still contain performance-limiting non-radiative recombination sites and exhibit a range of complex dynamic phenomena under illumination that remain poorly understood. Here we use a unique combination of confocal photoluminescence (PL) microscopy and chemical imaging to correlate the local changes in photophysics with composition in CH3NH3PbI3 films under illumination. We demonstrate that the photo-induced 'brightening' of the perovskite PL can be attributed to an order-of-magnitude reduction in trap state density. By imaging the same regions with time-of-flight secondary-ion-mass spectrometry, we correlate this photobrightening with a net migration of iodine. Our work provides visual evidence for photo-induced halide migration in triiodide perovskites and reveals the complex interplay between charge carrier populations, electronic traps and mobile halides that collectively impact optoelectronic performance.

Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications

Scientific Reports Nature Publishing Group (2016)

Authors:

Chun Huang, Jin Zhang, Neil P Young, Henry J Snaith, Patrick S Grant

Abstract:

Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solidstate supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multilayered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices.