Tripodal triazatruxene derivative as a face-on oriented hole-collecting monolayer for efficient and stable inverted perovskite solar cells

Journal of the American Chemical Society American Chemical Society 145:13 (2023) 7528-7539

Authors:

Minh Anh Truong, Tsukasa Funasaki, Lucas Ueberricke, Wataru Nojo, Richard Murdey, Takumi Yamada, Shuaifeng Hu, Aruto Akatsuka, Naomu Sekiguchi, Shota Hira, Lingling Xie, Tomoya Nakamura, Nobutaka Shioya, Daisuke Kan, Yuta Tsuji, Satoshi Iikubo, Hiroyuki Yoshida, Yuichi Shimakawa, Takeshi Hasegawa, Yoshihiko Kanemitsu, Takanori Suzuki, Atsushi Wakamiya

Abstract:

Hole-collecting monolayers have drawn attention in perovskite solar cell research due to their ease of processing, high performance, and good durability. Since molecules in the hole-collecting monolayer are typically composed of functionalized π-conjugated structures, hole extraction is expected to be more efficient when the π-cores are oriented face-on with respect to the adjacent surfaces. However, strategies for reliably controlling the molecular orientation in monolayers remain elusive. In this work, multiple phosphonic acid anchoring groups were used to control the molecular orientation of a series of triazatruxene derivatives chemisorbed on a transparent conducting oxide electrode surface. Using infrared reflection absorption spectroscopy and metastable atom electron spectroscopy, we found that multipodal derivatives align face-on to the electrode surface, while the monopodal counterpart adopts a more tilted configuration. The face-on orientation was found to facilitate hole extraction, leading to inverted perovskite solar cells with enhanced stability and high-power conversion efficiencies up to 23.0%.

Self-assembled molecules as selective contacts in CsPbBr 3 nanocrystal light emitting diodes

Journal of Materials Chemistry C Royal Society of Chemistry (RSC) 11:11 (2023) 3788-3795

Authors:

Sarika Kumari, José G Sánchez, Muhammad Imran, Ece Aktas, Dora A González, Liberato Manna, Eugenia Martínez-Ferrero, Emilio Palomares

Probing the local electronic structure in metal halide perovskites through cobalt substitution

Small Methods Wiley 7:6 (2023) 2300095

Authors:

Amir Haghighirad, M Klug, Liam Duffy, Junyie Liu, Arzhang Ardavan, Gerrit van der Laan, Thorsten Hesjedal, Henry Snaith

Abstract:

Owing to the unique chemical and electronic properties arising from 3d‐electrons, substitution with transition metal ions is one of the key routes for engineering new functionalities into materials. While this approach has been used extensively in complex metal oxide perovskites, metal halide perovskites have largely resisted facile isovalent substitution. In this work, it is demonstrated that the substitution of Co2+ into the lattice of methylammonium lead triiodide imparts magnetic behavior to the material while maintaining photovoltaic performance at low concentrations. In addition to comprehensively characterizing its magnetic properties, the Co2+ ions themselves are utilized as probes to sense the local electronic environment of Pb in the perovskite, thereby revealing the nature of their incorporation into the material. A comprehensive understanding of the effect of transition metal incorporation is provided, thereby opening the substitution gateway for developing novel functional perovskite materials and devices for future technologies.

Quantifying electrochemical losses in perovskite solar cells

Journal of Materials Chemistry C Royal Society of Chemistry (RSC) 11:8 (2023) 2911-2920

Authors:

Tulus, Junke Wang, Yulia Galagan, Elizabeth von Hauff

Open-circuit and short-circuit loss management in wide-gap perovskite p-i-n solar cells

Nature communications Springer Nature 14:1 (2023) 932

Authors:

Pietro Caprioglio, Joel A Smith, Robert DJ Oliver, Akash Dasgupta, Saqlain Choudhary, Michael D Farrar, Alexandra J Ramadan, Yen-Hung Lin, M Greyson Christoforo, James M Ball, Jonas Diekmann, Jarla Thiesbrummel, Karl-Augustin Zaininger, Xinyi Shen, Michael B Johnston, Dieter Neher, Martin Stolterfoht, Henry J Snaith

Abstract:

In this work, we couple theoretical and experimental approaches to understand and reduce the losses of wide bandgap Br-rich perovskite pin devices at open-circuit voltage (VOC) and short-circuit current (JSC) conditions. A mismatch between the internal quasi-Fermi level splitting (QFLS) and the external VOC is detrimental for these devices. We demonstrate that modifying the perovskite top-surface with guanidinium-Br and imidazolium-Br forms a low-dimensional perovskite phase at the n-interface, suppressing the QFLS-VOC mismatch, and boosting the VOC. Concurrently, the use of an ionic interlayer or a self-assembled monolayer at the p-interface reduces the inferred field screening induced by mobile ions at JSC, promoting charge extraction and raising the JSC. The combination of the n- and p-type optimizations allows us to approach the thermodynamic potential of the perovskite absorber layer, resulting in 1 cm2 devices with performance parameters of VOCs up to 1.29 V, fill factors above 80% and JSCs up to 17 mA/cm2, in addition to a thermal stability T80 lifetime of more than 3500 h at 85 °C.