Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems

Nature Energy Springer Nature 8:6 (2023) 610-620

Authors:

Tiantian Li, Jian Xu, Renxing Lin, Sam Teale, Hongjiang Li, Zhou Liu, Chenyang Duan, Qian Zhao, Ke Xiao, Pu Wu, Bin Chen, Sheng Jiang, Shaobing Xiong, Haowen Luo, Sushu Wan, Ludong Li, Qinye Bao, Yuxi Tian, Xueping Gao, Jin Xie, Edward H Sargent, Hairen Tan

Suppressed phase segregation for triple-junction perovskite solar cells

Nature Springer Nature 618:7963 (2023) 74-79

Authors:

Zaiwei Wang, Lewei Zeng, Tong Zhu, Hao Chen, Bin Chen, Dominik J Kubicki, Adam Balvanz, Chongwen Li, Aidan Maxwell, Esma Ugur, Roberto dos Reis, Matthew Cheng, Guang Yang, Biwas Subedi, Deying Luo, Juntao Hu, Junke Wang, Sam Teale, Suhas Mahesh, Sasa Wang, Shuangyan Hu, Eui Dae Jung, Mingyang Wei, So Min Park, Luke Grater, Erkan Aydin, Zhaoning Song, Nikolas J Podraza, Zheng-Hong Lu, Jinsong Huang, Vinayak P Dravid, Stefaan De Wolf, Yanfa Yan, Michael Grätzel, Merx G Kanatzidis, Edward H Sargent

Alumina nanoparticle interfacial buffer layer for low-bandgap lead-tin perovskite solar cells

(2023)

Abstract:

Mixed lead-tin (Pb:Sn) halide perovskites are promising absorbers with narrow-bandgaps (1.25–1.4 eV) suitable for high-efficiency all-perovskite tandem solar cells. However, solution processing of optimally thick Pb:Sn perovskite films is notoriously difficult in comparison with their neat-Pb counterparts. This is partly due to the rapid crystallization of Sn-based perovskites, resulting in films that have a high degree of roughness. Rougher films are harder to coat conformally with subsequent layers using solution-based processing techniques leading to contact between the absorber and the top metal electrode in completed devices, resulting in a loss of VOC, fill factor, efficiency, and stability. Herein, this study employs a non-continuous layer of alumina nanoparticles distributed on the surface of rough Pb:Sn perovskite films. Using this approach, the conformality of the subsequent electron-transport layer, which is only tens of nanometres in thickness is improved. The overall maximum-power-point-tracked efficiency improves by 65% and the steady-state VOC improves by 28%. Application of the alumina nanoparticles as an interfacial buffer layer also results in highly reproducible Pb:Sn solar cell devices while simultaneously improving device stability at 65 °C under full spectrum simulated solar irradiance. Aged devices show a six-fold improvement in stability over pristine Pb:Sn devices, increasing their lifetime to 120 h.

Optical Simulation-Aided Design and Engineering of Monolithic Perovskite/Silicon Tandem Solar Cells

ACS Applied Energy Materials American Chemical Society (ACS) 6:10 (2023) 5217-5229

Authors:

Yifeng Zhao, Kunal Datta, Nga Phung, Andrea EA Bracesco, Valerio Zardetto, Giulia Paggiaro, Hanchen Liu, Mohua Fardousi, Rudi Santbergen, Paul Procel Moya, Can Han, Guangtao Yang, Junke Wang, Dong Zhang, Bas T van Gorkom, Tom PA van der Pol, Michael Verhage, Martijn M Wienk, Wilhelmus MM Kessels, Arthur Weeber, Miro Zeman, Luana Mazzarella, Mariadriana Creatore, René AJ Janssen, Olindo Isabella

Ultranarrow linewidth room-temperature single-photon source from perovskite quantum dot embedded in optical microcavity

(2023)

Authors:

Amit R Dhawan, Tristan Farrow, Ashley Marshall, Alex Ghorbal, Wonmin Son, Henry J Snaith, Jason M Smith, Robert A Taylor