Synergistic surface modification of tin-lead perovskite solar cells
Advanced Materials Wiley 35:9 (2023) 2208320
Abstract:
Interfaces in thin-film photovoltaics play a pivotal role in determining device efficiency and longevity. Herein, we study the top surface treatment of mixed tin-lead (∼1.26 eV) halide perovskite films for p-i-n solar cells. We are able to promote charge extraction by treating the perovskite surface with piperazine. This compound reacts with the organic cations at the perovskite surface, modifying the surface structure and tuning the interfacial energy level alignment. In addition, the combined treatment with C<sub>60</sub> pyrrolidine tris-acid (CPTA) reduces hysteresis and leads to efficiencies up to 22.7%, with open-circuit voltage values reaching 0.90 V, ∼92% of the radiative limit for the band gap of this material. The modified cells also show superior stability, with unencapsulated cells retaining 96% of their initial efficiency after >2000 hours of storage in N<sub>2</sub> and encapsulated cells retaining 90% efficiency after >450 hours of storage in air. Intriguingly, CPTA preferentially binds to Sn<sup>2+</sup> sites at film surface over Pb<sup>2+</sup> due to the energetically favoured exposure of the former, according to first-principles calculations. This work provides new insights into the surface chemistry of perovskite films in terms of their structural, electronic, and defect characteristics and we use this knowledge to fabricate state-of-the-art solar cells.Efficient and stable formamidinium–caesium perovskite solar cells and modules from lead acetate-based precursors
Energy & Environmental Science Royal Society of Chemistry (RSC) 16:1 (2023) 138-147
Organic solvent free PbI2 recycling from perovskite solar cells using hot water.
Journal of hazardous materials Elsevier 447 (2023) 130829
Abstract:
Perovskite solar cells represent an emerging and highly promising renewable energy technology. However, the most efficient perovskite solar cells critically depend on the use of lead. This represents a possible environmental concern potentially limiting the technologies' commercialization. Here, we demonstrate a facile recycling process for PbI<sub>2</sub>, the most common lead-based precursor in perovskite absorber material. The process uses only hot water to effectively extract lead from synthetic precursor mixes, plastic- and glass-based perovskites (92.6 - 100% efficiency after two extractions). When the hot extractant is cooled, crystalline PbI<sub>2</sub> in high purity (> 95.9%) precipitated with a high yield: from glass-based perovskites, the first cycle of extraction / precipitation was sufficient to recover 94.4 ± 5.6% of Pb, whereas a second cycle yielded another 10.0 ± 5.2% Pb, making the recovery quantitative. The solid extraction residue remaining is consequently deprived of metals and may thus be disposed as non-hazardous waste. Therefore, exploiting the highly temperature-dependent solubility of PbI<sub>2</sub> in water provides a straightforward, easy to implement way to efficiently extract lead from PSC at the end-of-life and deposit the extraction residues in a cost-effective manner, mitigating the potential risk of lead leaching at the perovskites' end-of-life.Toward Uniaxially Textured CsPbIBr2 Perovskite Thin Films with Twin Domains by Potassium Incorporation
ACS Energy Letters American Chemical Society (ACS) 8:1 (2023) 699-706
Phosphine oxide modulator-ameliorated hole injection for blue perovskite light-emitting diodes
JOURNAL OF MATERIALS CHEMISTRY A 11:38 (2023) 20808-20815