Excellent Long-Range Charge-Carrier Mobility in 2D Perovskites

Fundacio Scito (2022)

Authors:

Manuel Kober-Czerny, Silvia G Motti, Philippe Holzhey, Bernard Wenger, Laura M Herz, Jongchul Lim, Henry Snaith

Intermediate-Phase Engineering via Dimethylammonium Cation Additive for Stable Perovskite Solar Cells

Fundacio Scito (2022)

Authors:

David McMeekin, Philippe Holzhey, Udo Bach, Henry Snaith

Understanding and Minimizing VOC Losses in All-Perovskite Tandem Photovoltaics

Fundacio Scito (2022)

Authors:

Jarla Thiesbrummel, Francisco Peña-Camargo, Kai Brinkmann, Martin Stolterfoht, Henry Snaith, Felix Lang

Materials to Improve the Performance of Sn-Based Perovskite Solar Cells

Institute of Electrical and Electronics Engineers (IEEE) 00 (2022) 10-11

Authors:

Atsushi Wakamiya, Shuaifeng Hu, Tomoya Nakamura, Taketo Handa, Takumi Yamada, Minh Anh Truong, Richard Murdey, Yoshihiko Kanemitsu

Cluster-Geometry-Associated Metal-Metal Bonding in Trimetallic Carbide Clusterfullerenes.

Inorganic chemistry 61:29 (2022) 11277-11283

Authors:

Shuaifeng Hu, Pei Zhao, Bo Li, Pengwei Yu, Le Yang, Masahiro Ehara, Peng Jin, Takeshi Akasaka, Xing Lu

Abstract:

Geometry configurations of the metallic clusters play a significant role in the involved bonding nature. Herein, we report the crystallographic characterization of unprecedented erbium-based trimetallic clusterfullerenes, namely, Er3C2@Ih(7)-C80, in which the inner Er3C2 cluster presents a lifted bat ray configuration with the C2 unit elevated by ∼1.62 Å above the Er3 plane. Within the plane, the Er···Er distances for Er1···Er2, Er1···Er2A, and Er2···Er2A are 3.4051(15), 3.4051(15), and 3.3178(15) Å, respectively, falling into the range of the metal-metal bonding. Density functional theory calculations unveil the three-center-one-electron Er-Er-Er bond in Er3C2@Ih(7)-C80 with one electron shared by three metals, and thus, its exceptional electronic structure can be expressed as (Er3)8+(C2)2-@C806-. Interestingly, with the further observation on the geometry configurations of the encapsulated clusters in M3C2@C2n (M = Sc, Y, and Lu) series, we find that the lifted bat ray configuration of the inner cluster is explicitly associated with the formation of the bonding interactions between the inner metals. This finding provides insights into the nature of metal-metal bonding and gives guidelines for the design of the single-molecule magnet.