Layered mixed tin–lead hybrid perovskite solar cells with high stability

ACS Energy Letters American Chemical Society 3:9 (2018) 2246-2251

Authors:

D Ramirez, Kelly Schutt, Zhiping Wang, AJ Pearson, E Ruggeri, Henry J Snaith, SD Stranks, F Jaramillo

Abstract:

For neat Pb perovskites, two-dimensional (2D) hybrid perovskites, where n layers of inorganic material are separated by a long-chain organic cation, generally exhibit greater stability but have lower photovoltaic performance characteristics, motivating the study of 2D/3D mixed-dimension systems to realize both high efficiency and stability. In this Letter, we demonstrate such optimal compromise between performance and stability using formamidinium, cesium, and t-butylammonium as A-site cations with Pb:Sn mixed-metal low-band-gap perovskites. Perovskite solar cells based on n = 4 and 5 lead–tin perovskites achieved power conversion efficiencies of up to 9.3 and 10.6%, respectively, and correspondingly retained 47 and 29% of their initial efficiency during storage in nitrogen for 2000 h. A similar stability trend for n = 4 over n = 5 was also observed for unencapsulated devices during continuous operation under a combined air atmosphere and temperature for 10 h, resulting in improved stability over the 3D lead–tin counterpart.

Modification of the fluorinated tin oxide/electron-transporting material interface by a strong reductant and its effect on perovskite solar cell efficiency

Molecular Systems Design and Engineering Royal Society of Chemistry 3:5 (2018) 741-747

Authors:

F Pulvirenti, B Wegner, Nakita K Noel, Giulio Mazzotta, R Hill, Jay B Patel, Laura M Herz, Michael B Johnston, Moritz K Riede, Henry J Snaith, N Koch, S Barlow

Abstract:

To date, the most efficient hybrid metal halide peroskite solar cells employ TiO2 as electron-transporting material (ETM), making these devices unstable under UV light exposure. Replacing TiO2 with fullerene derivatives has been shown to result in improved electronic contact and increased device lifetime, making it of interest to assess whether similar improvements can be achieved by using other organic semiconductors as ETMs. In this work, we investigate perylene-3,4:9,10-tetracarboxylic bis(benzimidazole) as a vacuum-processable ETM, and we minimize electron-collection losses at the electron-selective contact by depositing pentamethylcyclopentadienyl cyclopentadienyl rhodium dimer, (RhCp*Cp)2, on fluorinated tin oxide. With (RhCp*Cp)2 as an interlayer, ohmic contacts can be formed, there is interfacial doping of the ETM, and stabilized power conversion efficiencies of up to 14.2% are obtained.

High irradiance performance of metal halide perovskites for concentrator photovoltaics

Nature Energy Nature Publishing Group 3 (2018) 855-861

Authors:

Zhiping Wang, Qianqian Lin, Bernard Wenger, Mark Greyson Christoforo, Yen-Hung Lin, Matthew T Klug, Michael B Johnston, Laura M Herz, Henry J Snaith

Abstract:

Traditionally, III–V multi-junction cells have been used in concentrator photovoltaic (CPV) applications, which deliver extremely high efficiencies but have failed to compete with ‘flat-plate’ silicon technologies owing to cost. Here, we assess the feasibility of using metal halide perovskites for CPVs, and we evaluate their device performance and stability under concentrated light. Under simulated sunlight, we achieve a peak efficiency of 23.6% under 14 Suns (that is, 14 times the standard solar irradiance), as compared to 21.1% under 1 Sun, and measure 1.26 V open-circuit voltage under 53 Suns, for a material with a bandgap of 1.63 eV. Importantly, our encapsulated devices maintain over 90% of their original efficiency after 150 h aging under 10 Suns at maximum power point. Our work reveals the potential of perovskite CPVs, and may lead to new PV deployment strategies combining perovskites with low-concentration factor and lower-accuracy solar tracking systems.

The Impact of Device Polarity on the Performance of Polymer–Fullerene Solar Cells

Advanced Energy Materials Wiley 8:22 (2018)

Authors:

Mengmeng Li, Junyu Li, Dario Di Carlo Rasi, Fallon JM Colberts, Junke Wang, Gaël HL Heintges, Baojun Lin, Weiwei Li, Wei Ma, Martijn M Wienk, René AJ Janssen

Atomic layer deposited electron transport Layers in efficient organometallic halide perovskite devices

MRS Advances Cambridge University Press 3:51 (2018) 3075-3084

Authors:

MM McCarthy, A Walter, S-J Moon, Nakita Noel, S O’Brien, ME Pemble, S Nicolay, Bernard Wenger, Henry Snaith, IM Povey

Abstract:

Amorphous TiO2 and SnO2 electron transport layers (ETLs) were deposited by low-temperature atomic layer deposition (ALD). Surface morphology and x-ray photoelectron spectroscopy (XPS) indicate uniform and pinhole free coverage of these ALD hole blocking layers. Both mesoporous and planar perovskite solar cells were fabricated based on these thin films with aperture areas of 1.04 cm2 for TiO2 and 0.09 cm2 and 0.70 cm2 for SnO2. The resulting cell performance of 18.3 % power conversion efficiency (PCE) using planar SnO2 on 0.09 cm2 and 15.3 % PCE using mesoporous TiO2 on 1.04 cm2 active areas are discussed in conjunction with the significance of growth parameters and ETL composition.