Aligned and Graded Type‐II Ruddlesden–Popper Perovskite Films for Efficient Solar Cells

Advanced Energy Materials Wiley 8:21 (2018)

Authors:

Jian Qing, Xiao‐Ke Liu, Mingjie Li, Feng Liu, Zhongcheng Yuan, Elizaveta Tiukalova, Zhibo Yan, Martial Duchamp, Shi Chen, Yuming Wang, Sai Bai, Jun‐Ming Liu, Henry J Snaith, Chun‐Sing Lee, Tze Chien Sum, Feng Gao

Surface modified fullerene electron transport layers for stable and reproducible flexible perovskite solar cells

Nano Energy Elsevier 49 (2018) 324-332

Authors:

Seulki Song, Rebecca Hill, Kyoungwon Choi, Konrad Wojciechowski, Stephen Barlow, Johannes Leisen, Henry J Snaith, Seth R Marder, Taiho Park

Enhanced photovoltage for inverted planar heterojunction perovskite solar cells

Science American Association for the Advancement of Science 360:6396 (2018) 1442-1446

Authors:

D Luo, W Yang, Zhiping Wang, A Sadhanala, Q Hu, R Su, R Shivanna, GF Trindade, JF Watts, Z Xu, T Liu, K Chen, F Ye, P Wu, L Zhao, J Wu, Y Tu, Y Zhang, X Yang, W Zhang, RH Friend, Q Gong, HJ Snaith, R Zhu

Abstract:

The highest power conversion efficiencies (PCEs) reported for perovskite solar cells (PSCs) with inverted planar structures are still inferior to those of PSCs with regular structures, mainly because of lower open-circuit voltages (Voc). Here we report a strategy to reduce nonradiative recombination for the inverted devices, based on a simple solution-processed secondary growth technique. This approach produces a wider bandgap top layer and a more n-type perovskite film, which mitigates nonradiative recombination, leading to an increase in Voc by up to 100 millivolts. We achieved a high Voc of 1.21 volts without sacrificing photocurrent, corresponding to a voltage deficit of 0.41 volts at a bandgap of 1.62 electron volts. This improvement led to a stabilized power output approaching 21% at the maximum power point.

Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment

ACS Energy Letters American Chemical Society 3 (2018) 787-1794

Authors:

Rebecca Sutton, Marina Filip, A-A Haghighirad, Nobuya Sakai, B Wenger, Feliciano Giustino, Henry Snaith

Abstract:

Room-temperature films of black-phase caesium lead iodide (CsPbI3) are widely thought to be trapped in a cubic perovskite polymorph. Here, we challenge this assumption. We present structural refinement of room temperature black-phase CsPbI3 in an orthorhombic polymorph. We demonstrate that this polymorph is adopted by both powders and thin-films of black-phase CsPbI3, fabricated either by high- or low-temperature processes. We perform electronic band structure calculations for the orthorhombic polymorph and find agreement with experimental data and close similarities with orthorhombic methylammonium lead iodide. We investigate the structural transitions and thermodynamic stability of the various polymorphs of CsPbI3, and show that the orthorhombic polymorph is the most stable among its other perovskite polymorphs, but it remains less stable than the yellow non-perovskite polymorph.

Interplay of structural and optoelectronic properties in formamidinium mixed tin-lead triiodide perovskites

Advanced Functional Materials Wiley 28:33 (2018)

Authors:

ES Parrott, Thomas Green, Rebecca L Milot, Michael B Johnston, Henry J Snaith, Laura M Herz

Abstract:

Mixed lead-tin triiodide perovskites are promising absorber materials for low band-gap bottom cells in all-perovskite tandem photovoltaic devices. Key structural and electronic properties of the FAPb1-xSnxI3 perovskite are presented here as a function of lead:tin content across the alloy series. Temperature-dependent photoluminescence and optical absorption measurements are used to identify changes in the band-gap and phase transition temperature. The large band-gap bowing parameter, a crucial element for the attainment of low band-gaps in this system, is shown to depend on the structural phase, reaching a value of 0.84 eV in the low-temperature phase and 0.73 eV at room temperature. The parabolic nature of the bowing at all temperatures is compatible with a mechanism arising from bond bending to accommodate the random placement of unevenly sized lead and tin ions. Charge-carrier recombination dynamics are shown to fall into two regimes. Tin-rich compositions exhibit fast, mono-exponential recombination that is almost temperature independent, in accordance with high levels of electrical doping. Lead-rich compositions show slower, stretched-exponential charge-carrier recombination that is strongly temperature-dependent, in accordance with a multi-phonon assisted process. These results highlight the importance of structure and composition for control of band-gap bowing and charge-carrier recombination mechanisms in low band-gap absorbers for all-perovskite tandem solar cells.