Spatially Resolved Doping Concentration and Nonradiative Lifetime Profiles in Single Si-Doped InP Nanowires Using Photoluminescence Mapping.
Nano letters 15:5 (2015) 3017-3023
Abstract:
We report an analysis method that combines microphotoluminescence mapping and lifetime mapping data of single semiconductor nanowires to extract the doping concentration, nonradiative lifetime, and internal quantum efficiency along the length of the nanowires. Using this method, the doping concentration of single Si-doped wurtzite InP nanowires are mapped out and confirmed by the electrical measurements of single nanowire devices. Our method has important implication for single nanowire detectors and LEDs and nanowire solar cells applications.Fast charge-carrier trapping in TiO2 nanotubes
Journal of Physical Chemistry C American Chemical Society 119:17 (2015) 9159-9168
Abstract:
One-dimensional semiconductors such as nanowires and nanotubes are attractive materials for incorporation in photovoltaic devices as they potentially offer short percolation pathways to charge-collecting contacts. We report the observation of free-electron lifetimes in TiOHighly efficient perovskite solar cells with tunable structural color
Nano Letters American Chemical Society 15:3 (2015) 1698-1702
Abstract:
The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the color gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here, we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tunable color across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment and encourages design of sustainable colorful buildings and iridescent electric vehicles as future power generation sources.Modulation doping of GaAs/AlGaAs core-shell nanowires with effective defect passivation and high electron mobility
Nano letters American Chemical Society 15:2 (2015) 1336-1342
Abstract:
Reliable doping is required to realize many devices based on semiconductor nanowires. Group III-V nanowires show great promise as elements of high-speed optoelectronic devices, but for such applications it is important that the electron mobility is not compromised by the inclusion of dopants. Here we show that GaAs nanowires can be n-type doped with negligible loss of electron mobility. Molecular beam epitaxy was used to fabricate modulation-doped GaAs nanowires with Al0.33Ga0.67As shells that contained a layer of Si dopants. We identify the presence of the doped layer from a high-angle annular dark field scanning electron microscopy cross-section image. The doping density, carrier mobility, and charge carrier lifetimes of these n-type nanowires and nominally undoped reference samples were determined using the noncontact method of optical pump terahertz probe spectroscopy. An n-type extrinsic carrier concentration of 1.10 ± 0.06 × 10(16) cm(-3) was extracted, demonstrating the effectiveness of modulation doping in GaAs nanowires. The room-temperature electron mobility was also found to be high at 2200 ± 300 cm(2) V(-1) s(-1) and importantly minimal degradation was observed compared with undoped reference nanowires at similar electron densities. In addition, modulation doping significantly enhanced the room-temperature photoconductivity and photoluminescence lifetimes to 3.9 ± 0.3 and 2.4 ± 0.1 ns respectively, revealing that modulation doping can passivate interfacial trap states.Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells
Materials Horizons Royal Society of Chemistry 2:3 (2015) 315-322