Electron mobilities approaching bulk limits in "surface-free" GaAs nanowires.

Nano letters American Chemical Society 14:10 (2014) 5989-5994

Authors:

Hannah Joyce, Patrick Parkinson, Nian Jiang, CJ Docherty, Qiang Gao, H Hoe Tan, Chennupati Jagadish, Laura Herz, Michael Johnston

Abstract:

Achieving bulk-like charge carrier mobilities in semiconductor nanowires is a major challenge facing the development of nanowire-based electronic devices. Here we demonstrate that engineering the GaAs nanowire surface by overcoating with optimized AlGaAs shells is an effective means of obtaining exceptionally high carrier mobilities and lifetimes. We performed measurements of GaAs/AlGaAs core-shell nanowires using optical pump-terahertz probe spectroscopy: a noncontact and accurate probe of carrier transport on ultrafast time scales. The carrier lifetimes and mobilities both improved significantly with increasing AlGaAs shell thickness. Remarkably, optimized GaAs/AlGaAs core-shell nanowires exhibited electron mobilities up to 3000 cm(2) V(-1) s(-1), reaching over 65% of the electron mobility typical of high quality undoped bulk GaAs at equivalent photoexcited carrier densities. This points to the high interface quality and the very low levels of ionized impurities and lattice defects in these nanowires. The improvements in mobility were concomitant with drastic improvements in photoconductivity lifetime, reaching 1.6 ns. Comparison of photoconductivity and photoluminescence dynamics indicates that midgap GaAs surface states, and consequently surface band-bending and depletion, are effectively eliminated in these high quality heterostructures.

Solution deposition-conversion for planar heterojunction mixed halide perovskite solar cells

Advanced Energy Materials 4:14 (2014)

Authors:

P Docampo, FC Hanusch, SD Stranks, M Döblinger, JM Feckl, M Ehrensperger, NK Minar, MB Johnston, HJ Snaith, T Bein

Abstract:

Solution-deposited-converted perovskite solar cells are studied by converting PbI2planar films into the phase pure, mixed-halide perovskite (H3CNH3)PbI3-xClx. These solar cells exhibit very high photovoltaic performance and close to unity internal incident photon-to-electron conversion.

Solution Deposition‐Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells

Advanced Energy Materials Wiley 4:14 (2014)

Authors:

Pablo Docampo, Fabian C Hanusch, Samuel D Stranks, Markus Döblinger, Johann M Feckl, Martin Ehrensperger, Norma K Minar, Michael B Johnston, Henry J Snaith, Thomas Bein

Special issue on terahertz science and technology

Journal of Physics D IOP Publishing 47:37 (2014) 370301

THz time-domain spectroscopy for tokamak plasma diagnostics

AIP Conference Proceedings AIP Publishing 1612:1 (2014) 121-124

Authors:

F Causa, M Zerbini, M Johnston, P Buratti, A Doria, L Gabellieri, GP Gallerano, E Giovenale, D Pacella, A Romano, AA Tuccillo, O Tudisco