Noncontact measurement of charge carrier lifetime and mobility in GaN nanowires.

Nano Lett 12:9 (2012) 4600-4604

Authors:

Patrick Parkinson, Christopher Dodson, Hannah J Joyce, Kris A Bertness, Norman A Sanford, Laura M Herz, Michael B Johnston

Abstract:

The first noncontact photoconductivity measurements of gallium nitride nanowires (NWs) are presented, revealing a high crystallographic and optoelectronic quality achieved by use of catalyst-free molecular beam epitaxy. In comparison with bulk material, the NWs exhibit a long conductivity lifetime (>2 ns) and a high mobility (820 ± 120 cm(2)/(V s)). This is due to the weak influence of surface traps with respect to other III-V semiconducting NWs and to the favorable crystalline structure of the NWs achieved via strain-relieved growth.

Terahertz properties of graphene

Journal of Infrared, Millimeter, and Terahertz Waves 33:8 (2012) 797-815

Authors:

CJ Docherty, MB Johnston

Abstract:

Graphene has proved itself as being unique in terms of fundamental physics, and of particular importance for post-silicon electronics. Research into graphene has divided into two branches, one probing the remarkable electronic and optical properties of graphene, and the other pursuing technologically viable forms of the material. Terahertz time domain spectroscopy (THz TDS) is a powerful tool for both, able to characterise the free carrier response of graphene and probe the inter and intraband response of excited carriers with sub-ps time resolution. We review THz TDS and related THz measurements of graphene. © Springer Science+Business Media, LLC 2012.

Nanoengineering coaxial carbon nanotube-dual-polymer heterostructures.

ACS Nano 6:7 (2012) 6058-6066

Authors:

Samuel D Stranks, Chaw-Keong Yong, Jack A Alexander-Webber, Christian Weisspfennig, Michael B Johnston, Laura M Herz, Robin J Nicholas

Abstract:

We describe studies of new nanostructured materials consisting of carbon nanotubes wrapped in sequential coatings of two different semiconducting polymers, namely, poly(3-hexylthiophene) (P3HT) and poly(9,9'-dioctylfluorene-co-benzothiadiazole) (F8BT). Using absorption spectroscopy and steady-state and ultrafast photoluminescence measurements, we demonstrate the role of the different layer structures in controlling energy levels and charge transfer in both solution and film samples. By varying the simple solution processing steps, we can control the ordering and proportions of the wrapping polymers in the solid state. The resulting novel coaxial structures open up a variety of new applications for nanotube blends and are particularly promising for implementation into organic photovoltaic devices. The carbon nanotube template can also be used to optimize both the electronic properties and morphology of polymer composites in a much more controlled fashion than achieved previously, offering a route to producing a new generation of polymer nanostructures.

Ultrafast dynamics of exciton formation in semiconductor nanowires.

Small 8:11 (2012) 1725-1731

Authors:

Chaw Keong Yong, Hannah J Joyce, James Lloyd-Hughes, Qiang Gao, Hark Hoe Tan, Chennupati Jagadish, Michael B Johnston, Laura M Herz

Abstract:

The dynamics of free electron-hole pairs and excitons in GaAs-AlGaAs-GaAs core-shell-skin nanowires is investigated using femtosecond transient photoluminescence spectroscopy at 10 K. Following nonresonant excitation, a bimolecular interconversion of the initially generated electron-hole plasma into an exciton population is observed. This conducting-to-insulating transition appears to occur gradually over electron-hole charge pair densities of 2-4 × 10(16) cm(-3) . The smoothness of the Mott transition is attributed to the slow carrier-cooling during the bimolecular interconversion of free charge carriers into excitons and to the presence of chemical-potential fluctuations leading to inhomogeneous spectral characteristics. These results demonstrate that high-quality nanowires are model systems for investigating fundamental scientific effects in 1D heterostructures.

Quantitative measurement of a 3-component mixture based on THz spectra

Proceedings of SPIE - The International Society for Optical Engineering 8330 (2012)

Authors:

Z Li, Z Zhang, X Zhao, H Su, F Yan, K Dunn, MB Johnston

Abstract:

Quantitative measurement based on THz absorption spectrum is of great importance in THz applications. Several researchers have worked on it and gained some achievements, but most of them explored pure component or no more than 2-component s samples. In this paper, a mixture sample consisting of Glutamine, Histidine and Threonine is investigated in the frequency range from 0.3 to 2.6 THz. The quantitative measurement principle is the Lambert-Beer's Law which have been accepted in infrared and visible spectra. Our experiments show the validation of the law in THz region. A Least-Mean-Square algorithm is adopted and measurement errors of Glutamine, Histidine and Threonine are 17.60%, 4.44% and 2.59%.© 2012 SPIE.