Extreme sensitivity of graphene photoconductivity to environmental gases

(2012)

Authors:

Callum J Docherty, Cheng-Te Lin, Hannah J Joyce, Robin J Nicholas, Laura M Herz, Lain-Jong Li, Michael B Johnston

Environment induced variation in the photoconductivity of graphene observed by terahertz spectroscopy

International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz (2012)

Authors:

CJ Docherty, CT Lin, HJ Joyce, RJ Nicholas, LJ Li, MB Johnston

Abstract:

Chemical vapour deposition (CVD) grown graphene sheets were investigated using optical-pump terahertz-probe spectroscopy, revealing a dramatic variation in the photoinduced terahertz conductivity of graphene in different atmospheres. © 2012 IEEE.

Non-Linear Direct-Laser-Write Lithography for Semiconductor Nanowire Characterisation

Institute of Electrical and Electronics Engineers (IEEE) (2012) 135-136

Authors:

P Parkinson, K Peng, N Jiang, Q Gao, HH Tan, C Jagadish

Simulation of fluence-dependent photocurrent in terahertz photoconductive receivers

Semiconductor Science and Technology 27:11 (2012)

Authors:

E Castro-Camus, MB Johnston, J Lloyd-Hughes

Abstract:

A semi-classical Monte Carlo simulation of carrier dynamics in photoconductive detectors of terahertz (THz) radiation is presented. We have used this simulation to elucidate the importance of carrier trapping in the operation of photoconductive detectors. Simulations of the detection of single-cycle THz pulses by photoconductive antennas based on GaAs with trap densities between 2 × 10 17 and 2 × 10 18 cm 3 are presented. We show that the high frequency (>1 THz) spectral response of photoconductive devices decreases with increasing excitation fluence. Our simulations reveal that this effect is a direct consequence of the saturation of trapping centres © 2012 IOP Publishing Ltd.

The origin of an efficiency improving "light soaking" effect in SnO 2 based solid-state dye-sensitized solar cells

Energy and Environmental Science 5:11 (2012) 9566-9573

Authors:

P Tiwana, P Docampo, MB Johnston, LM Herz, HJ Snaith

Abstract:

We observe a strong "light-soaking" effect in SnO 2 based solid-state dye-sensitized solar cells (SDSCs). Both with and without the presence of UV light, the device's short-circuit photocurrent and efficiency increase significantly over 20-30 minutes, until steady-state is achieved. We demonstrate that this is not due to improved charge collection and investigate the charge generation dynamics employing optical-pump terahertz-probe spectroscopy. We observe a monotonic speeding-up of the generation of free-electrons in the SnO 2 conduction band as a function of the light-soaking time. This improved charge generation can be explained by a positive shift in the conduction band edge or, alternatively, an increase in the density of states (DoS) at the energy at which photoinduced electron transfer occurs. To verify this hypothesis, we perform capacitance and charge extraction measurements which indicate a shift in the surface potential of SnO 2 of up to 70 mV with light soaking. The increased availability of states into which electrons can be transferred justifies the increase in both the charge injection rate and ensuing photocurrent. The cause for the shift in surface potential is not clear, but we postulate that it is due to the photoinduced charging of the SnO 2 inducing a rearrangement of charged species or loss of surface oxygen at the dye-sensitized heterojunction. Understanding temporally evolving processes in DSCs is of critical importance for enabling this technology to operate optimally over a prolonged period of time. This work specifically highlights important changes that can occur at the dye-sensitized heterojunction, even without direct light absorption in the metal oxide. © 2012 The Royal Society of Chemistry.