Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Calculated exciton wave function in a hybrid organic-inorganic layered halide perovskite
Credit: Figure created with VESTA; calculations performed with the BerkeleyGW code

Marina Filip

Associate Professor

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Computational Condensed Matter Physics Group
  • Advanced Device Concepts for Next-Generation Photovoltaics
marina.filip@physics.ox.ac.uk
Clarendon Laboratory, room 109
  • About
  • Publications

Optimally tuned starting point for single-shot GW calculations of solids

Physical Review Materials American Physical Society 6:5 (2022) 53802

Authors:

Stephen E Gant, Jonah B Haber, Marina R Filip, Francisca Sagredo, Dahvyd Wing, Guy Ohad, Leeor Kronik, Jeffrey B Neaton

Abstract:

The dependence of ab initio many-body perturbation theory within the GW approximation on the eigensystem used in calculating quasiparticle corrections limits this method's predictive power. Here, we investigate the accuracy of the recently developed Wannier-localized optimally tuned screened range-separated hybrid (WOT-SRSH) functional as a generalized Kohn-Sham starting point for single-shot GW (G0W0) calculations for a range of semiconductors and insulators. Comparison to calculations based on well-established functionals, namely, PBE, PBE0, and HSE, as well as to self-consistent GW schemes and to experiment, shows that band gaps computed via G0W0@WOT-SRSH have a level of precision and accuracy that is comparable to that of more advanced methods such as quasiparticle self-consistent GW and eigenvalue self-consistent GW. We also find that G0W0@WOT-SRSH improves the description of states deeper in the valence band manifold. Finally, we show that G0W0@WOT-SRSH significantly reduces the sensitivity of computed band gaps to ambiguities in the underlying WOT-SRSH tuning procedure.

More details from the publisher
Details from ORA
More details

Optoelectronic properties of mixed iodide-bromide perovskites from first-principles computational modeling and experiment

Journal of Physical Chemistry Letters American Chemical Society 13:18 (2022) 4184-4192

Authors:

Yinan Chen, Silvia G Motti, Robert DJ Oliver, Adam D Wright, Henry J Snaith, Michael B Johnston, Laura M Herz, Marina R Filip

Abstract:

Halogen mixing in lead-halide perovskites is an effective route for tuning the band gap in light emission and multijunction solar cell applications. Here we report the effect of halogen mixing on the optoelectronic properties of lead-halide perovskites from theory and experiment. We applied the virtual crystal approximation within density functional theory, the <i>GW</i> approximation, and the Bethe-Salpeter equation to calculate structural, vibrational, and optoelectronic properties for a series of mixed halide perovskites. We separately perform spectroscopic measurements of these properties and analyze the impact of halogen mixing on quasiparticle band gaps, effective masses, absorption coefficients, charge-carrier mobilities, and exciton binding energies. Our joint theoretical-experimental study demonstrates that iodide-bromide mixed-halide perovskites can be modeled as homovalent alloys, and local structural distortions do not play a significant role for the properties of these mixed species. Our study outlines a general theoretical-experimental framework for future investigations of novel chemically mixed systems.
More details from the publisher
Details from ORA
More details
More details

An Optimally-Tuned Starting Point for Single-Shot $GW$ Calculations of Solids

(2022)

Authors:

Stephen E Gant, Jonah B Haber, Marina R Filip, Francisca Sagredo, Dahvyd Wing, Guy Ohad, Leeor Kronik, Jeffrey B Neaton
More details from the publisher

Tracking electron and hole dynamics in 3D dirac semimetals

Proceedings of the 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2021) IEEE (2021)

Authors:

Jl Boland, Da Damry, Cq Xia, M Filip, P Schönherr, T Hesjedal, D Prabhakaran, Lm Herz, Mb Johnston

Abstract:

Using ultrafast optical-pump terahertz-probe spectroscopy (OPTP) and ultrafast terahertz emission spectroscopy, we showcase the electron and hole dynamics in Cd3As2 nanowires (NWs), a well-known 3D Dirac semimetal a subgroup of the newly discovered . A temperature-dependent photoconductivity measurement was carried out yielding an incredibly high electron mobility ~ 16,000 cm2/Vs at 5K. Strong THz emission due to helicity-dependent surface photocurrents was also observed for both nanowires and single crystal (SC) which is highly desirable for devices such as THz sources.
More details from the publisher
Details from ORA
More details

Band edge orbital character strongly impacts the excitonic properties of halide double perovskites

Fundacio Scito (2021)

Authors:

Raisa-Ioana Biega, Yinan Chen, Marina R Filip, Linn Leppert
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet