Rearrangement collision theory of phonon-driven exciton dissociation
Physical Review B American Physical Society 110:5 (2024) 054307
Abstract:
Understanding the processes governing the dissociation of excitons to free charge carriers in semiconductors and insulators is of central importance for photovoltaic applications. Dyson's S-matrix formalism provides a framework for computing scattering rates between quasiparticle states derived from the same underlying Hamiltonian, often reducing to familiar Fermi's "golden rule"like expressions at first order. By presenting a rigorous formalism for multichannel scattering, we extend this approach to describe scattering between composite quasiparticles and, in particular, the process of exciton dissociation mediated by the electron-phonon interaction. Subsequently, we derive rigorous expressions for the exciton dissociation rate, a key quantity of interest in optoelectronic materials, which enforce correct energy conservation and may be readily used in ab initio calculations. We apply our formalism to a three-dimensional model system to compare temperature-dependent exciton rates obtained for different scattering channels.Electronic structure and optical properties of halide double perovskites from a Wannier-localized optimally-tuned screened range-separated hybrid functional
(2024)
Phonon screening of excitons in atomically thin semiconductors
(2024)
Halide perovskites from first principles: from fundamental optoelectronic properties to the impact of structural and chemical heterogeneity
Electronic Structure IOP Publishing 6:3 (2024) 033002
Abstract:
Organic-inorganic metal-halide perovskite semiconductors have outstanding and widely tunable optoelectronic properties suited for a broad variety of applications. First-principles numerical modelling techniques are playing a key role in unravelling structure-property relationships of this structurally and chemically diverse family of materials, and for predicting new materials and properties. Herein we review first-principles calculations of the photophysics of halide perovskites with a focus on the band structures, optical absorption spectra and excitons, and the effects of electron- and exciton-phonon coupling and temperature on these properties. We focus on first-principles approaches based on density functional theory and Green’s function-based many-body perturbation theory and provide an overview of these approaches. While a large proportion of first-principles studies have been focusing on the prototypical ABX3 single perovskites based on Pb and Sn, recent years have witnessed significant efforts to further functionalize halide perovskites, broadening this family of materials to include double perovskites, quasi-low-dimensional structures, and other organic-inorganic materials, interfaces and heterostructures. While this enormous chemical space of perovskite and perovskite-like materials has only begun to be tapped experimentally, recent advances in theoretical and computational methods, as well as in computing infrastructure, have led to the possibility of understanding the photophysics of ever more complex systems. We illustrate this progress in our review by summarizing representative studies of first-principles calculations of halide perovskites with various degrees of complexity.Phonon screening and dissociation of excitons at finite temperatures from first principles
Proceedings of the National Academy of Sciences National Academy of Sciences 121:30 (2024) e2403434121