3D lead-organoselenide-halide perovskites and their mixed-chalcogenide and mixed-halide alloys
Angewandte Chemie International Edition Wiley 63:41 (2024) e202408443
Abstract:
We incorporate Se into the 3D halide perovskite framework using the zwitterionic ligand: SeCYS (+NH3(CH2)2Se-), which occupies both the X- and A+ sites in the prototypical ABX3 perovskite. The new organoselenide-halide perovskites: (SeCYS)PbX2 (X = Cl, Br) expand upon the recently discovered organosulfide-halide perovskites. Single-crystal X-ray diffraction and pair distribution function analysis reveal the average structures of the organoselenide-halide perovskites, whereas the local lead coordination environments and their distributions were probed through solid-state 77Se and 207Pb NMR, complemented by theoretical simulations. Density functional theory calculations illustrate that the band structures of (SeCYS)PbX2 largely resemble those of their S analogs, with similar band dispersion patterns, yet with a considerable bandgap decrease. Optical absorbance measurements indeed show bandgaps of 2.07 and 1.86 eV for (SeCYS)PbX2 with X = Cl and Br, respectively. We further demonstrate routes to alloying the halides (Cl, Br) and chalcogenides (S, Se) continuously tuning the bandgap from 1.86 to 2.31 eV-straddling the ideal range for tandem solar cells or visible-light photocatalysis. The comprehensive description of the average and local structures, and how they can fine-tune the bandgap and potential trap states, respectively, establishes the foundation for understanding this new perovskite family, which combines solid-state and organo-main-group chemistry.Rearrangement collision theory of phonon-driven exciton dissociation
Physical Review B American Physical Society 110:5 (2024) 054307
Abstract:
Understanding the processes governing the dissociation of excitons to free charge carriers in semiconductors and insulators is of central importance for photovoltaic applications. Dyson's S-matrix formalism provides a framework for computing scattering rates between quasiparticle states derived from the same underlying Hamiltonian, often reducing to familiar Fermi's "golden rule"like expressions at first order. By presenting a rigorous formalism for multichannel scattering, we extend this approach to describe scattering between composite quasiparticles and, in particular, the process of exciton dissociation mediated by the electron-phonon interaction. Subsequently, we derive rigorous expressions for the exciton dissociation rate, a key quantity of interest in optoelectronic materials, which enforce correct energy conservation and may be readily used in ab initio calculations. We apply our formalism to a three-dimensional model system to compare temperature-dependent exciton rates obtained for different scattering channels.Electronic structure and optical properties of halide double perovskites from a Wannier-localized optimally-tuned screened range-separated hybrid functional
(2024)
Phonon screening of excitons in atomically thin semiconductors
(2024)
Halide perovskites from first principles: from fundamental optoelectronic properties to the impact of structural and chemical heterogeneity
Electronic Structure IOP Publishing 6:3 (2024) 033002