Phonon screening of excitons in atomically thin semiconductors
(2024)
Halide perovskites from first principles: from fundamental optoelectronic properties to the impact of structural and chemical heterogeneity
Electronic Structure IOP Publishing 6:3 (2024) 033002
Abstract:
Organic-inorganic metal-halide perovskite semiconductors have outstanding and widely tunable optoelectronic properties suited for a broad variety of applications. First-principles numerical modelling techniques are playing a key role in unravelling structure-property relationships of this structurally and chemically diverse family of materials, and for predicting new materials and properties. Herein we review first-principles calculations of the photophysics of halide perovskites with a focus on the band structures, optical absorption spectra and excitons, and the effects of electron- and exciton-phonon coupling and temperature on these properties. We focus on first-principles approaches based on density functional theory and Green’s function-based many-body perturbation theory and provide an overview of these approaches. While a large proportion of first-principles studies have been focusing on the prototypical ABX3 single perovskites based on Pb and Sn, recent years have witnessed significant efforts to further functionalize halide perovskites, broadening this family of materials to include double perovskites, quasi-low-dimensional structures, and other organic-inorganic materials, interfaces and heterostructures. While this enormous chemical space of perovskite and perovskite-like materials has only begun to be tapped experimentally, recent advances in theoretical and computational methods, as well as in computing infrastructure, have led to the possibility of understanding the photophysics of ever more complex systems. We illustrate this progress in our review by summarizing representative studies of first-principles calculations of halide perovskites with various degrees of complexity.Phonon screening and dissociation of excitons at finite temperatures from first principles.
Proceedings of the National Academy of Sciences of the United States of America Proceedings of the National Academy of Sciences 121:30 (2024) e2403434121
Abstract:
The properties of excitons, or correlated electron-hole pairs, are of paramount importance to optoelectronic applications of materials. A central component of exciton physics is the electron-hole interaction, which is commonly treated as screened solely by electrons within a material. However, nuclear motion can screen this Coulomb interaction as well, with several recent studies developing model approaches for approximating the phonon screening of excitonic properties. While these model approaches tend to improve agreement with experiment, they rely on several approximations that restrict their applicability to a wide range of materials, and thus far they have neglected the effect of finite temperatures. Here, we develop a fully first-principles, parameter-free approach to compute the temperature-dependent effects of phonon screening within the ab initio [Formula: see text]-Bethe-Salpeter equation framework. We recover previously proposed models of phonon screening as well-defined limits of our general framework, and discuss their validity by comparing them against our first-principles results. We develop an efficient computational workflow and apply it to a diverse set of semiconductors, specifically AlN, CdS, GaN, MgO, and [Formula: see text]. We demonstrate under different physical scenarios how excitons may be screened by multiple polar optical or acoustic phonons, how their binding energies can exhibit strong temperature dependence, and the ultrafast timescales on which they dissociate into free electron-hole pairs.Rearrangement collision theory of phonon-driven exciton dissociation
(2024)
Phonon screening and dissociation of excitons at finite temperatures from first principles
(2023)