Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Calculated exciton wave function in a hybrid organic-inorganic layered halide perovskite
Credit: Figure created with VESTA; calculations performed with the BerkeleyGW code

Marina Filip

Associate Professor

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Computational Condensed Matter Physics Group
  • Advanced Device Concepts for Next-Generation Photovoltaics
marina.filip@physics.ox.ac.uk
Clarendon Laboratory, room 109
  • About
  • Publications

Minimal molecular building blocks for screening in quasi-two-dimensional organic–inorganic lead halide perovskites

Nano Letters American Chemical Society 23:9 (2023) 3796-3802

Authors:

Jack McArthur, Marina R Filip, Diana Y Qiu

Abstract:

Layered hybrid organic–inorganic lead halide perovskites have intriguing optoelectronic properties, but some of the most interesting perovskite systems, such as defective, disordered, or mixed perovskites, require multiple unit cells to describe and are not accessible within state-of-the-art ab initio theoretical approaches for computing excited states. The principal bottleneck is the calculation of the dielectric matrix, which scales formally as O(N4). We develop here a fully ab initio approximation for the dielectric matrix, known as IPSA-2C, in which we separate the polarizability of the organic/inorganic layers into minimal building blocks, thus circumventing the undesirable power-law scaling. The IPSA-2C method reproduces the quasi-particle band structures and absorption spectra for a series of Ruddlesden–Popper perovskites to high accuracy, by including critical nonlocal effects neglected in simpler models, and sheds light on the complicated interplay of screening between the organic and inorganic sublattices.

More details from the publisher
Details from ORA
More details
More details

Zwitterions in 3D perovskites: organosulfide-halide perovskites

Journal of the American Chemical Society American Chemical Society 144:49 (2022) 22403-22408

Authors:

Jiayi Li, Zhihengyu Chen, Santanu Saha, James K Utterback, Michael L Aubrey, Rongfeng Yuan, Hannah L Weaver, Naomi S Ginsberg, Karena W Chapman, Marina R Filip, Hemamala I Karunadasa

Abstract:

Although sulfide perovskites usually require high-temperature syntheses, we demonstrate that organosulfides can be used in the milder syntheses of halide perovskites. The zwitterionic organosulfide, cysteamine (CYS; +NH3(CH2)2S–), serves as both the X– site and A+ site in the ABX3 halide perovskites, yielding the first examples of 3D organosulfide-halide perovskites: (CYS)PbX2 (X– = Cl– or Br–). Notably, the band structures of (CYS)PbX2 capture the direct bandgaps and dispersive bands of APbX3 perovskites. The sulfur orbitals compose the top of the valence band in (CYS)PbX2, affording unusually small direct bandgaps of 2.31 and 2.16 eV for X– = Cl– and Br–, respectively, falling in the ideal range for the top absorber in a perovskite-based tandem solar cell. Measurements of the carrier dynamics in (CYS)PbCl2 suggest carrier trapping due to defects or lattice distortions. The highly desirable bandgaps, band dispersion, and improved stability of the organosulfide perovskites demonstrated here motivate the continued expansion and exploration of this new family of materials, particularly with respect to extracting photocurrent. Our strategy of combining the A+ and X– sites with zwitterions may offer more members in this family of mixed-anion 3D hybrid perovskites.

More details from the publisher
Details from ORA
More details
More details

Band gaps of halide perovskites from a Wannier-localized optimally tuned screened range-separated hybrid functional

Physical Review Materials American Physical Society 6:10 (2022) 104606

Authors:

Guy Ohad, Dahvyd Wing, Stephen E Gant, Ayala V Cohen, Jonah B Haber, Francisca Sagredo, Marina R Filip, Jeffrey B Neaton, Leeor Kronik

Abstract:

The accurate prediction of the band gaps of halide perovskites within density functional theory is known to be challenging. The recently developed Wannier-localized optimally tuned screened range-separated hybrid functional was shown to be highly accurate for fundamental band gaps of standard semiconductors and insulators. This was achieved by selecting the parameters of the functional to satisfy an ansatz that generalizes the ionization potential theorem to the removal of charge from a state that corresponds to a Wannier function. Here, we present applications of the method to the band gaps of typical halide perovskites. We find a satisfyingly small formal mean absolute error of ∼0.1 eV with respect to experimental band gaps and very good agreement with previous many-body perturbation theory calculations.
More details from the publisher
Details from ORA
More details
More details

Understanding the Impact of Dimensional Reduction on the Optoelectronic Properties of Ag/Bi-based Double Perovskites from First Principles

Fundacio Scito (2022)

Authors:

Raisa-Ioana Biega, Marina R Filip, Linn Lepper
More details from the publisher

Screening of excitons by organic cations in quasi-two-dimensional organic–inorganic lead-halide perovskites

Nano Letters American Chemical Society 22:12 (2022) 4870-4878

Authors:

Marina R Filip, Diana Y Qiu, Mauro Del Ben, Jeffrey B Neaton

Abstract:

Interlayer organic cations in quasi-two-dimensional halide perovskites are a versatile tuning vehicle for the optoelectronic properties of these complex systems, but chemical intuition for this design route is yet to be established. Here, we use density functional theory, the GW approximation, and the Bethe-Salpeter equation approach to understand the contribution of the organic cation to the quasiparticle band gap and exciton binding energy of layered perovskites. We show that organic cations in quasi-two-dimensional perovskites contribute significantly to the dielectric screening in these systems, countering quantum confinement effects on the quasiparticle band gap and the exciton binding energy. Using a simple electrostatics model inspired by parallel-plate capacitors, we decouple the organic cation and inorganic layer contributions to the effective dielectric constants and show that dielectric properties of layered perovskites are broadly tunable via the interlayer cation, providing a direct means of tuning photophysical properties for a variety of applications.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet