Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Calculated exciton wave function in a hybrid organic-inorganic layered halide perovskite
Credit: Figure created with VESTA; calculations performed with the BerkeleyGW code

Marina Filip

Professor of Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Computational Condensed Matter Physics Group
  • Advanced Device Concepts for Next-Generation Photovoltaics
marina.filip@physics.ox.ac.uk
Clarendon Laboratory, room 109
  • About
  • Publications

Tunable interlayer delocalization of excitons in layered organic-inorganic halide perovskites

Journal of Physical Chemistry Letters American Chemical Society 14:47 (2023) 10634-10641

Authors:

Yinan Chen, Marina R Filip

Abstract:

Layered organic-inorganic halide perovskites exhibit remarkable structural and chemical diversity and hold great promise for optoelectronic devices. In these materials, excitons are thought to be strongly confined within the inorganic metal halide layers with interlayer coupling generally suppressed by the organic cations. Here, we present an in-depth study of the energy and spatial distribution of the lowest-energy excitons in layered organic-inorganic halide perovskites from first-principles many-body perturbation theory, within the GW approximation and the Bethe-Salpeter equation. We find that the quasiparticle band structures, linear absorption spectra, and exciton binding energies depend strongly on the distance and the alignment of adjacent metal halide perovskite layers. Furthermore, we show that exciton delocalization can be modulated by tuning the interlayer distance and alignment, both parameters determined by the chemical composition and size of the organic cations. Our calculations establish the general intuition needed to engineer excitonic properties in novel halide perovskite nanostructures.
More details from the publisher
Details from ORA
More details
More details

Roadmap on Photovoltaic Absorber Materials for Sustainable Energy Conversion

(2023)

Authors:

James C Blakesley, Ruy S Bonilla, Marina Freitag, Alex M Ganose, Nicola Gasparini, Pascal Kaienburg, George Koutsourakis, Jonathan D Major, Jenny Nelson, Nakita K Noel, Bart Roose, Jae Sung Yun, Simon Aliwell, Pietro P Altermatt, Tayebeh Ameri, Virgil Andrei, Ardalan Armin, Diego Bagnis, Jenny Baker, Hamish Beath, Mathieu Bellanger, Philippe Berrouard, Jochen Blumberger, Stuart A Boden, Hugo Bronstein, Matthew J Carnie, Chris Case, Fernando A Castro, Yi-Ming Chang, Elmer Chao, Tracey M Clarke, Graeme Cooke, Pablo Docampo, Ken Durose, James R Durrant, Marina R Filip, Richard H Friend, Jarvist M Frost, Elizabeth A Gibson, Alexander J Gillett, Pooja Goddard, Severin N Habisreutinger, Martin Heeney, Arthur D Hendsbee, Louise C Hirst, M Saiful Islam, KDG Imalka Jayawardena, Michael B Johnston, Matthias Kauer, Jeff Kettle, Ji-Seon Kim, Dan Lamb, David Lidzey, Jihoo Lim, Roderick MacKenzie, Nigel Mason, Iain McCulloch, Keith P McKenna, Sebastian B Meier, Paul Meredith, Graham Morse, John D Murphy, Chris Nicklin, Paloma Ortega-Arriaga, Thomas Osterberg, Jay B Patel, Anthony Peaker, Moritz Riede, Martyn Rush, James W Ryan, David O Scanlon, Peter J Skabara, Franky So, Henry J Snaith, Ludmilla Steier, Jarla Thiesbrummel, Alessandro Troisi, Craig Underwood, Karsten Walzer, Trystan Watson, J Michael Walls, Aron Walsh, Lucy D Whalley, Benedict Winchester, Samuel D Stranks, Robert LZ Hoye
More details from the publisher
Details from ArXiV

Optical absorption spectra of metal oxides from time-dependent density functional theory and many-body perturbation theory based on optimally-tuned hybrid functionals

(2023)

Authors:

Guy Ohad, Stephen E Gant, Dahvyd Wing, Jonah B Haber, María Camarasa-Gómez, Francisca Sagredo, Marina R Filip, Jeffrey B Neaton, Leeor Kronik
More details from the publisher

Chemical mapping of excitons in halide double perovskites

Nano Letters American Chemical Society 23:17 (2023) 8155-8161

Authors:

Raisa-Ioana Biega, Yinan Chen, Marina R Filip, Linn Leppert

Abstract:

Halide double perovskites comprise an emerging class of semiconductors with tremendous chemical and electronic diversity. While their band structure features can be understood from frontier-orbital models, chemical intuition for optical excitations remains incomplete. Here, we use ab initio many-body perturbation theory within the GW and the Bethe–Salpeter equation approach to calculate excited-state properties of a representative range of Cs2BB′Cl6 double perovskites. Our calculations reveal that double perovskites with different combinations of B and B′ cations display a broad variety of electronic band structures and dielectric properties and form excitons with binding energies ranging over several orders of magnitude. We correlate these properties with the orbital-induced anisotropy of charge-carrier effective masses and the long-range behavior of the dielectric function by comparing them with the canonical conditions of the Wannier–Mott model. Furthermore, we derive chemically intuitive rules for predicting the nature of excitons in halide double perovskites using computationally inexpensive density functional theory calculations.
More details from the publisher
Details from ORA
More details
More details

Correction to “Zwitterions in 3D Perovskites: Organosulfide-Halide Perovskites”

Journal of the American Chemical Society American Chemical Society (ACS) 145:25 (2023) 14164-14164

Authors:

Jiayi Li, Zhihengyu Chen, Santanu Saha, James K Utterback, Michael L Aubrey, Rongfeng Yuan, Hannah L Weaver, Naomi S Ginsberg, Karena W Chapman, Marina R Filip, Hemamala I Karunadasa
More details from the publisher
More details
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet