Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

Translocation through environments with time dependent mobility.

J Chem Phys 137:20 (2012) 204911

Authors:

Jack A Cohen, Abhishek Chaudhuri, Ramin Golestanian

Abstract:

We consider single particle and polymer translocation where the frictional properties experienced from the environment are changing in time. This work is motivated by the interesting frequency responsive behaviour observed when a polymer is passing through a pore with an oscillating width. In order to explain this better we construct general diffusive and non-diffusive frequency response of the gain in translocation time for a single particle in changing environments and look at some specific variations. For two state confinement, where the particle either has constant drift velocity or is stationary, we find exact expressions for both the diffusive and non-diffusive gain. We then apply this approach to polymer translocation under constant forcing through a pore with a sinusoidally varying width. We find good agreement for small polymers at low frequency oscillation with deviations occurring at longer lengths and higher frequencies. Unlike periodic forcing of a single particle at constant mobility, constant forcing with time dependent mobility is amenable to exact solution through manipulation of the Fokker-Planck equation.
More details from the publisher
More details
Details from ArXiV

Emergent Run-and-Tumble Behavior in a Simple Model of Chlamydomonas with Intrinsic Noise

ArXiv 1211.3272 (2012)

Authors:

Rachel R Bennett, Ramin Golestanian

Abstract:

Recent experiments on the green alga Chlamydomonas that swims using synchronized beating of a pair of flagella have revealed that it exhibits a run-and-tumble behavior similar to that of bacteria such as E. Coli. Using a simple purely hydrodynamic model that incorporates a stroke cycle and an intrinsic Gaussian white noise, we show that a stochastic run-and-tumble behavior could emerge, due to the nonlinearity of the combined synchronization-rotation-translation dynamics. This suggests the intriguing possibility that the alga might exploit nonlinear mechanics---as opposed to sophisticated biochemical circuitry as used by bacteria---to control its behavior.
Details from ArXiV
More details from the publisher
More details
More details

Length scale dependence of DNA mechanical properties

ArXiv 1210.7205 (2012)

Authors:

Agnes Noy, Ramin Golestanian

Abstract:

Although mechanical properties of DNA are well characterized at the kilo base-pair range, a number of recent experiments have suggested that DNA is more flexible at shorter length scales, which correspond to the regime that is crucial for cellular processes such as DNA packaging and gene regulation. Here, we perform a systematic study of the effective elastic properties of DNA at different length scales by probing the conformation and fluctuations of DNA from single base-pair level up to four helical turns, using trajectories from atomistic simulation. We find evidence that supports cooperative softening of the stretch modulus and identify the essential modes that give rise to this effect. The bend correlation exhibits modulations that reflect the helical periodicity, while it yields a reasonable value for the effective persistence length, and the twist modulus undergoes a smooth crossover---from a relatively smaller value at the single base-pair level to the bulk value---over half a DNA-turn.
Details from ArXiV
More details from the publisher
More details
More details

A Scattering Approach to the Dynamical Casimir Effect

ArXiv 1210.1842 (2012)

Authors:

Mohammad F Maghrebi, Ramin Golestanian, Mehran Kardar

Abstract:

We develop a unified scattering approach to dynamical Casimir problems which can be applied to both accelerating boundaries, as well as dispersive objects in relative motion. A general (trace) formula is derived for the radiation from accelerating boundaries. Applications are provided for objects with different shapes in various dimensions, and undergoing rotational or linear motion. Within this framework, photon generation is discussed in the context of a modulated optical mirror. For dispersive objects, we find general results solely in terms of the scattering matrix. Specifically, we discuss the vacuum friction on a rotating object, and the friction on an atom moving parallel to a surface.
Details from ArXiV
More details from the publisher

Hydrodynamic Synchronization between Objects with Cyclic Rigid Trajectories

ArXiv 1209.4481 (2012)

Authors:

Nariya Uchida, Ramin Golestanian

Abstract:

Synchronization induced by long-range hydrodynamic interactions is attracting attention as a candidate mechanism behind coordinated beating of cilia and flagella. Here we consider a minimal model of hydrodynamic synchronization in the low Reynolds number limit. The model consists of rotors, each of which assumed to be a rigid bead making a fixed trajectory under periodically varying driving force. By a linear analysis, we derive the necessary and sufficient conditions for a pair of rotors to synchronize in phase. We also derive a non-linear evolution equation for their phase difference, which is reduced to minimization of an effective potential. The effective potential is calculated for a variety of trajectory shapes and geometries (either bulk or substrated), for which the stable and metastable states of the system are identified. Finite size of the trajectory induces asymmetry of the potential, which also depends sensitively on the tilt of the trajectory. Our results show that flexibility of cilia or flagella is {\it not} a requisite for their synchronized motion, in contrast to previous expectations. We discuss the possibility to directly implement the model and verify our results by optically driven colloids.
Details from ArXiV
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 40
  • Page 41
  • Page 42
  • Page 43
  • Current page 44
  • Page 45
  • Page 46
  • Page 47
  • Page 48
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet