Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

Emergent Run-and-Tumble Behavior in a Simple Model of Chlamydomonas with Intrinsic Noise

ArXiv 1211.3272 (2012)

Authors:

Rachel R Bennett, Ramin Golestanian

Abstract:

Recent experiments on the green alga Chlamydomonas that swims using synchronized beating of a pair of flagella have revealed that it exhibits a run-and-tumble behavior similar to that of bacteria such as E. Coli. Using a simple purely hydrodynamic model that incorporates a stroke cycle and an intrinsic Gaussian white noise, we show that a stochastic run-and-tumble behavior could emerge, due to the nonlinearity of the combined synchronization-rotation-translation dynamics. This suggests the intriguing possibility that the alga might exploit nonlinear mechanics---as opposed to sophisticated biochemical circuitry as used by bacteria---to control its behavior.
Details from ArXiV
More details from the publisher
More details
More details

Length scale dependence of DNA mechanical properties

ArXiv 1210.7205 (2012)

Authors:

Agnes Noy, Ramin Golestanian

Abstract:

Although mechanical properties of DNA are well characterized at the kilo base-pair range, a number of recent experiments have suggested that DNA is more flexible at shorter length scales, which correspond to the regime that is crucial for cellular processes such as DNA packaging and gene regulation. Here, we perform a systematic study of the effective elastic properties of DNA at different length scales by probing the conformation and fluctuations of DNA from single base-pair level up to four helical turns, using trajectories from atomistic simulation. We find evidence that supports cooperative softening of the stretch modulus and identify the essential modes that give rise to this effect. The bend correlation exhibits modulations that reflect the helical periodicity, while it yields a reasonable value for the effective persistence length, and the twist modulus undergoes a smooth crossover---from a relatively smaller value at the single base-pair level to the bulk value---over half a DNA-turn.
Details from ArXiV
More details from the publisher
More details
More details

A Scattering Approach to the Dynamical Casimir Effect

ArXiv 1210.1842 (2012)

Authors:

Mohammad F Maghrebi, Ramin Golestanian, Mehran Kardar

Abstract:

We develop a unified scattering approach to dynamical Casimir problems which can be applied to both accelerating boundaries, as well as dispersive objects in relative motion. A general (trace) formula is derived for the radiation from accelerating boundaries. Applications are provided for objects with different shapes in various dimensions, and undergoing rotational or linear motion. Within this framework, photon generation is discussed in the context of a modulated optical mirror. For dispersive objects, we find general results solely in terms of the scattering matrix. Specifically, we discuss the vacuum friction on a rotating object, and the friction on an atom moving parallel to a surface.
Details from ArXiV
More details from the publisher

Hydrodynamic Synchronization between Objects with Cyclic Rigid Trajectories

ArXiv 1209.4481 (2012)

Authors:

Nariya Uchida, Ramin Golestanian

Abstract:

Synchronization induced by long-range hydrodynamic interactions is attracting attention as a candidate mechanism behind coordinated beating of cilia and flagella. Here we consider a minimal model of hydrodynamic synchronization in the low Reynolds number limit. The model consists of rotors, each of which assumed to be a rigid bead making a fixed trajectory under periodically varying driving force. By a linear analysis, we derive the necessary and sufficient conditions for a pair of rotors to synchronize in phase. We also derive a non-linear evolution equation for their phase difference, which is reduced to minimization of an effective potential. The effective potential is calculated for a variety of trajectory shapes and geometries (either bulk or substrated), for which the stable and metastable states of the system are identified. Finite size of the trajectory induces asymmetry of the potential, which also depends sensitively on the tilt of the trajectory. Our results show that flexibility of cilia or flagella is {\it not} a requisite for their synchronized motion, in contrast to previous expectations. We discuss the possibility to directly implement the model and verify our results by optically driven colloids.
Details from ArXiV
More details from the publisher
More details
More details

Chiral structure of F-actin bundle formed by multivalent counterions

Soft Matter 8:13 (2012) 3649-3656

Authors:

S Mohammadinejad, R Golestanian, H Fazli

Abstract:

The mechanism of multivalent counterion-induced bundle formation by filamentous actin (F-actin) is studied using a coarse-grained model and molecular dynamics simulations. Real diameter size, helically ordered charge distribution and twist rigidity of F-actin are taken into account in our model. The attraction between parallel F-actins induced by multivalent counterions is studied in detail and it is found that the maximum attraction occurs between their closest charged domains. The model F-actins aggregate due to the like-charge attraction and form closely packed bundles. Counterions are mostly distributed in the narrowest gaps between neighboring F-actins inside the bundles and the channels between three adjacent F-actins correspond to the low density of the counterions. Density of the counterions varies periodically with a wave length comparable to the separation between consecutive G-actin monomers along the actin polymers. Long-lived defects in the hexagonal order of F-actins in the bundles are observed; their number increases with increasing the bundle size. A combination of electrostatic interactions and twist rigidity has been found not to change the symmetry of the F-actin helical conformation from the native symmetry. Calculation of the zero-temperature energy of hexagonally ordered model F-actins with the charge of the counterions distributed as columns of charge domains representing counterion charge density waves has shown that helical symmetries commensurate with the hexagonal lattice correspond to local minima of the energy of the system. The global minimum of energy corresponds to symmetry with the columns of charge domains arranged in the narrowest gaps between the neighboring F-actins. © 2012 The Royal Society of Chemistry.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 40
  • Page 41
  • Page 42
  • Page 43
  • Current page 44
  • Page 45
  • Page 46
  • Page 47
  • Page 48
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet