Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

Chiral structure of F-actin bundle formed by multivalent counterions

Soft Matter 8:13 (2012) 3649-3656

Authors:

S Mohammadinejad, R Golestanian, H Fazli

Abstract:

The mechanism of multivalent counterion-induced bundle formation by filamentous actin (F-actin) is studied using a coarse-grained model and molecular dynamics simulations. Real diameter size, helically ordered charge distribution and twist rigidity of F-actin are taken into account in our model. The attraction between parallel F-actins induced by multivalent counterions is studied in detail and it is found that the maximum attraction occurs between their closest charged domains. The model F-actins aggregate due to the like-charge attraction and form closely packed bundles. Counterions are mostly distributed in the narrowest gaps between neighboring F-actins inside the bundles and the channels between three adjacent F-actins correspond to the low density of the counterions. Density of the counterions varies periodically with a wave length comparable to the separation between consecutive G-actin monomers along the actin polymers. Long-lived defects in the hexagonal order of F-actins in the bundles are observed; their number increases with increasing the bundle size. A combination of electrostatic interactions and twist rigidity has been found not to change the symmetry of the F-actin helical conformation from the native symmetry. Calculation of the zero-temperature energy of hexagonally ordered model F-actins with the charge of the counterions distributed as columns of charge domains representing counterion charge density waves has shown that helical symmetries commensurate with the hexagonal lattice correspond to local minima of the energy of the system. The global minimum of energy corresponds to symmetry with the columns of charge domains arranged in the narrowest gaps between the neighboring F-actins. © 2012 The Royal Society of Chemistry.
More details from the publisher
More details
Details from ArXiV

Synchronizing noncontact rack-and-pinion devices

Applied Physics Letters 100:11 (2012)

Authors:

M Nasiri, M Miri, R Golestanian

Abstract:

The lateral Casimir force is employed to propose a nanoscale mechanical device composed of one rack and N pinions. A coupling between the pinions via torsional springs is shown to coordinate their motion through a synchronization transition. The system can work against loads that are greater than the lateral Casimir force for each device. The existence of a stable synchronized state ensures that the system could operate in full coordination without the need of delicate fine tuning of all the characteristics such as the spring constants, the corrugation amplitudes, and the distances between the rack and the pinions. © 2012 American Institute of Physics.
More details from the publisher
More details

Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 85:2 (2012)

Authors:

S Ebbens, MH Tu, JR Howse, R Golestanian

Abstract:

The propulsion velocity of active colloids that asymmetrically catalyze a chemical reaction is probed experimentally as a function of their sizes. It is found that over the experimentally accessible range, the velocity decays as a function of size, with a rate that is compatible with an inverse size dependence. A diffusion-reaction model for the concentrations of the fuel and waste molecules that takes into account a two-step process for the asymmetric catalytic activity on the surface of the colloid is shown to predict a similar behavior for colloids at the large size limit, with a saturation for smaller sizes. © 2012 American Physical Society.
More details from the publisher
More details

Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers.

Phys Rev E Stat Nonlin Soft Matter Phys 85:2-1 (2012) 020401

Authors:

S Ebbens, MH Tu, JR Howse, R Golestanian

Abstract:

The propulsion velocity of active colloids that asymmetrically catalyze a chemical reaction is probed experimentally as a function of their sizes. It is found that over the experimentally accessible range, the velocity decays as a function of size, with a rate that is compatible with an inverse size dependence. A diffusion-reaction model for the concentrations of the fuel and waste molecules that takes into account a two-step process for the asymmetric catalytic activity on the surface of the colloid is shown to predict a similar behavior for colloids at the large size limit, with a saturation for smaller sizes.

Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers.

Phys Rev E Stat Nonlin Soft Matter Phys 85:2 Pt 1 (2012) 020401

Authors:

Stephen Ebbens, Mei-Hsien Tu, Jonathan R Howse, Ramin Golestanian

Abstract:

The propulsion velocity of active colloids that asymmetrically catalyze a chemical reaction is probed experimentally as a function of their sizes. It is found that over the experimentally accessible range, the velocity decays as a function of size, with a rate that is compatible with an inverse size dependence. A diffusion-reaction model for the concentrations of the fuel and waste molecules that takes into account a two-step process for the asymmetric catalytic activity on the surface of the colloid is shown to predict a similar behavior for colloids at the large size limit, with a saturation for smaller sizes.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 41
  • Page 42
  • Page 43
  • Page 44
  • Current page 45
  • Page 46
  • Page 47
  • Page 48
  • Page 49
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet