Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

Many-body theory of synchronization by long-range interactions.

Physical review letters 106:6 (2011) 064101

Abstract:

Synchronization of coupled oscillators on a d-dimensional lattice with the power-law coupling G(r) = g0/rα and randomly distributed intrinsic frequency is analyzed. A systematic perturbation theory is developed to calculate the order parameter profile and correlation functions in powers of ϵ = α/d-1. For α ≤ d, the system exhibits a sharp synchronization transition as described by the conventional mean-field theory. For α > d, the transition is smeared by the quenched disorder, and the macroscopic order parameter ψ decays slowly with g0 as |ψ| ∝ g(0)(2).
More details from the publisher
More details
More details

Probing passive diffusion of flagellated and deflagellated Escherichia coli.

Eur Phys J E Soft Matter 34:2 (2011) 16

Authors:

S Tavaddod, MA Charsooghi, F Abdi, HR Khalesifard, R Golestanian

Abstract:

Using particle-tracking techniques, the translational and rotational diffusion of paralyzed E. coli with and without flagella are studied experimentally. The position and orientation of the bacteria are tracked in the lab frame and their corresponding mean-square displacements are analyzed in the lab frame and in the body frame to extract the intrinsic anisotropic translational diffusion coefficients as well as the rotational diffusion coefficient for both strains. The deflagellated strain is found to show an anisotropic translational diffusion, with diffusion coefficients that are compatible with theoretical estimates based on its measured geometrical features. The corresponding translational diffusion coefficients of the flagellated strain have been found to be reduced as compared to those of the deflagellated counterpart. Similar results have also been found for the rotational diffusion coefficients of the two strains. Our results suggest that the presence of flagella --even as a passive component-- has a significant role in the dynamics of E. coli, and should be taken into account in theoretical studies of its motion.
More details from the publisher
More details

Pseudogap of metallic layered nickelate R(2-x)Sr(x)NiO4 (R = Nd, Eu) crystals measured using angle-resolved photoemission spectroscopy.

Physical review letters 106:2 (2011) 027001

Authors:

M Uchida, K Ishizaka, P Hansmann, Y Kaneko, Y Ishida, X Yang, R Kumai, A Toschi, Y Onose, R Arita, K Held, OK Andersen, S Shin, Y Tokura

Abstract:

We have investigated charge dynamics and electronic structures for single crystals of metallic layered nickelates, R(2-x)Sr(x)NiO4 (R = Nd, Eu), isostructural to La(2-x)Sr(x)CuO4. Angle-resolved photoemission spectroscopy on the barely metallic Eu(0.9)Sr(1.1)NiO4 (R = Eu, x = 1.1) has revealed a large hole surface of x2-y2 character with a high-energy pseudogap of the same symmetry and comparable magnitude with those of underdoped (x<0.1) cuprates, although the antiferromagnetic interactions are 1 order of magnitude smaller. This finding strongly indicates that the momentum-dependent pseudogap feature in the layered nickelate arises from the real-space charge correlation.
More details from the publisher
More details
More details

Active Polymer Translocation through Flickering Pores

PHYSICAL REVIEW LETTERS 107:23 (2011) ARTN 238102

Authors:

Jack A Cohen, Abhishek Chaudhuri, Ramin Golestanian
More details from the publisher

Coherent Hydrodynamic Coupling for Stochastic Swimmers

ArXiv 1007.2077 (2010)

Authors:

Ali Najafi, Ramin Golestanian

Abstract:

A recently developed theory of stochastic swimming is used to study the notion of coherence in active systems that couple via hydrodynamic interactions. It is shown that correlations between various modes of deformation in stochastic systems play the same role as the relative internal phase in deterministic systems. An example is presented where a simple swimmer can use these correlations to hunt a non-swimmer by forming a hydrodynamic bound state of tunable velocity and equilibrium separation. These results highlight the significance of coherence in the collective behavior of nano-scale stochastic swimmers.
Details from ArXiV
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 44
  • Page 45
  • Page 46
  • Page 47
  • Current page 48
  • Page 49
  • Page 50
  • Page 51
  • Page 52
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet