Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 85:2 (2012)
Abstract:
The propulsion velocity of active colloids that asymmetrically catalyze a chemical reaction is probed experimentally as a function of their sizes. It is found that over the experimentally accessible range, the velocity decays as a function of size, with a rate that is compatible with an inverse size dependence. A diffusion-reaction model for the concentrations of the fuel and waste molecules that takes into account a two-step process for the asymmetric catalytic activity on the surface of the colloid is shown to predict a similar behavior for colloids at the large size limit, with a saturation for smaller sizes. © 2012 American Physical Society.Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers.
Phys Rev E Stat Nonlin Soft Matter Phys 85:2-1 (2012) 020401
Abstract:
The propulsion velocity of active colloids that asymmetrically catalyze a chemical reaction is probed experimentally as a function of their sizes. It is found that over the experimentally accessible range, the velocity decays as a function of size, with a rate that is compatible with an inverse size dependence. A diffusion-reaction model for the concentrations of the fuel and waste molecules that takes into account a two-step process for the asymmetric catalytic activity on the surface of the colloid is shown to predict a similar behavior for colloids at the large size limit, with a saturation for smaller sizes.Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers.
Phys Rev E Stat Nonlin Soft Matter Phys 85:2 Pt 1 (2012) 020401
Abstract:
The propulsion velocity of active colloids that asymmetrically catalyze a chemical reaction is probed experimentally as a function of their sizes. It is found that over the experimentally accessible range, the velocity decays as a function of size, with a rate that is compatible with an inverse size dependence. A diffusion-reaction model for the concentrations of the fuel and waste molecules that takes into account a two-step process for the asymmetric catalytic activity on the surface of the colloid is shown to predict a similar behavior for colloids at the large size limit, with a saturation for smaller sizes.Stochastic sensing of polynucleotides using patterned nanopores
ArXiv 1201.4489 (2012)
Abstract:
The effect of the microscopic structure of a pore on polymer translocation is studied using Langevin dynamics simulation, and the consequence of introducing patterned stickiness inside the pore is investigated. It is found that the translocation process is extremely sensitive to the detailed structure of such patterns with faster than exponential dependence of translocation times on the stickiness of the pore. The stochastic nature of the translocation process leads to discernable differences between how polymers with different sequences go through specifically patterned pores. This notion is utilized to propose a stochastic sensing protocol for polynucleotides, and it is demonstrated that the method, which would be significantly faster than the existing methods, could be made arbitrarily robust.Collective behavior of thermally active colloids
Physical Review Letters 108:3 (2012)