Active Polymer Translocation through Flickering Pores
PHYSICAL REVIEW LETTERS 107:23 (2011) ARTN 238102
Coherent Hydrodynamic Coupling for Stochastic Swimmers
ArXiv 1007.2077 (2010)
Abstract:
A recently developed theory of stochastic swimming is used to study the notion of coherence in active systems that couple via hydrodynamic interactions. It is shown that correlations between various modes of deformation in stochastic systems play the same role as the relative internal phase in deterministic systems. An example is presented where a simple swimmer can use these correlations to hunt a non-swimmer by forming a hydrodynamic bound state of tunable velocity and equilibrium separation. These results highlight the significance of coherence in the collective behavior of nano-scale stochastic swimmers.Synthetic mechanochemical molecular swimmer.
Phys Rev Lett 105:1 (2010) 018103
Abstract:
A minimal design for a molecular swimmer is proposed that is based on a mechanochemical propulsion mechanism. Conformational changes are induced by electrostatic actuation when specific parts of the molecule temporarily acquire net charges through catalyzed chemical reactions involving ionic components. The mechanochemical cycle is designed such that the resulting conformational changes would be sufficient for achieving low Reynolds number propulsion. The system is analyzed within the recently developed framework of stochastic swimmers to take account of the noisy environment at the molecular scale. The swimming velocity of the device is found to depend on the concentration of the fuel molecule according to the Michaelis-Menten rule in enzymatic reactions.Self-assembled autonomous runners and tumblers.
Phys Rev E Stat Nonlin Soft Matter Phys 82:1 Pt 2 (2010) 015304
Abstract:
A class of artificial microswimmers with combined translational and rotational self-propulsion is studied experimentally. The chemically fueled microswimmers are made of doublets of Janus colloidal beads with catalytic patches that are positioned at a fixed angle relative to one another. The mean-square displacement and the mean-square angular displacement of the active doublets are analyzed in the context of a simple Langevin description, using which the physical characteristics of the microswimmers such as the spontaneous translational and rotational velocities are extracted. Our work suggests strategies for designing microswimmers that could follow prescribed cycloidal trajectories.The chirality of DNA: elasticity cross-terms at base-pair level including A-tracts and the influence of ionic strength.
J Phys Chem B 114:23 (2010) 8022-8031