Effect of the Heterogeneity of Metamaterials on Casimir-Lifshitz Interaction
ArXiv 1006.1369 (2010)
Abstract:
The Casimir-Lifshitz interaction between metamaterials is studied using a model that takes into account the structural heterogeneity of the dielectric and magnetic properties of the bodies. A recently developed perturbation theory for the Casimir-Lifshitz interaction between arbitrary material bodies is generalized to include non-uniform magnetic permeability profiles, and used to study the interaction between the magneto-dielectric heterostructures within the leading order. The metamaterials are modeled as two dimensional arrays of domains with varying permittivity and permeability. In the case of two semi-infinite bodies with flat boundaries, the patterned structure of the material properties is found to cause the normal Casimir-Lifshitz force to develop an oscillatory behavior when the distance between the two bodies is comparable to the wavelength of the patterned features in the metamaterials. The non-uniformity also leads to the emergence of lateral Casimir-Lifshitz forces, which tend to strengthen as the gap size becomes smaller. Our results suggest that the recent studies on Casimir-Lifshitz forces between metamaterials, which have been performed with the aim of examining the possibility of observing the repulsive force, should be revisited to include the effect of the patterned structure at the wavelength of several hundred nanometers that coincides with the relevant gap size in the experiments.Synchronization and collective dynamics in a carpet of microfluidic rotors.
Phys Rev Lett 104:17 (2010) 178103
Abstract:
We study synchronization of an array of rotors on a substrate that are coupled by hydrodynamic interaction. Each rotor, which is modeled by an effective rigid body, is driven by an internal torque and exerts an active force on the surrounding fluid. The long-ranged nature of the hydrodynamic interaction between the rotors causes a rich pattern of dynamical behaviors including phase ordering and self-proliferating spiral waves. Our results suggest strategies for designing controllable microfluidic mixers using the emergent behavior of hydrodynamically coupled active components.Synchronization in A Carpet of Hydrodynamically Coupled Rotors with Random Intrinsic Frequency
ArXiv 1001.271 (2010)
Abstract:
We investigate synchronization caused by long-range hydrodynamic interaction in a two-dimensional, substrated array of rotors with random intrinsic frequencies. The rotor mimics a flagellated bacterium that is attached to the substrate ("bacterial carpet") and exerts an active force on the fluid. Transition from coherent to incoherent regimes is studied numerically, and the results are compared to a mean-field theory. We show that quite a narrow distribution of the intrinsic frequency is required to achieve collective motion in realistic cases. The transition is gradual, and the critical behavior is qualitatively different from that of the conventional globally coupled oscillators. The model not only serves as a novel example of non-locally coupled oscillators, but also provides insights into the role of intrinsic heterogeneities in living and artificial microfluidic actuators.Peptidoglycan architecture can specify division planes in Staphylococcus aureus
Nature Communications 1:3 (2010)
Abstract:
Division in Staphylococci occurs equatorially and on specific sequentially orthogonal planes in three dimensions, resulting, after incomplete cell separation, in the 'bunch of grapes' cluster organization that defines the genus. The shape of Staphylococci is principally maintained by peptidoglycan. In this study, we use Atomic Force Microscopy (AFM) and fluorescence microscopy with vancomycin labelling to examine purified peptidoglycan architecture and its dynamics in Staphylococcus aureus and correlate these with the cell cycle. At the presumptive septum, cells were found to form a large belt of peptidoglycan in the division plane before the centripetal formation of the septal disc; this often had a 'piecrust' texture. After division, the structures remain as orthogonal ribs, encoding the location of past division planes in the cell wall. We propose that this epigenetic information is used to enable S. aureus to divide in sequentially orthogonal planes, explaining how a spherical organism can maintain division plane localization with fidelity over many generations. © 2010 Macmillan Publishers Limited. All rights reserved.Controlled propulsion in viscous fluids of magnetically actuated colloidal doublets.
Phys Rev E Stat Nonlin Soft Matter Phys 81:1 Pt 1 (2010) 011402