Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Yen-Hung Lin

Long Term Visitor

Sub department

  • Condensed Matter Physics
yen-hung.lin@physics.ox.ac.uk
Telephone: 01865 (2)82328
Robert Hooke Building, room G26
  • About
  • Publications

Elucidating the long-range charge carrier mobility in metal halide perovskite thin films

Energy and Environmental Science Royal Society of Chemistry 12:1 (2018) 169-176

Authors:

Jongchul Lim, M Hoerantner, Nobuya Sakai, James M Ball, Suhas Mahesh, Nakita K Noel, Yen-Hung Lin, Jay B Patel, David P McMeekin, Michael B Johnston, Bernard Wenger, Henry J Snaith

Abstract:

Many optoelectronic properties have been reported for lead halide perovskite polycrystalline films. However, ambiguities in the evaluation of these properties remain, especially for long-range lateral charge transport, where ionic conduction can complicate interpretation of data. Here we demonstrate a new technique to measure the long-range charge carrier mobility in such materials. We combine quasi-steady-state photo-conductivity measurements (electrical probe) with photo-induced transmission and reflection measurements (optical probe) to simultaneously evaluate the conductivity and charge carrier density. With this knowledge we determine the lateral mobility to be ∼2 cm2 V−1 s−1 for CH3NH3PbI3 (MAPbI3) polycrystalline perovskite films prepared from the acetonitrile/methylamine solvent system. Furthermore, we present significant differences in long-range charge carrier mobilities, from 2.2 to 0.2 cm2 V−1 s−1, between films of contemporary perovskite compositions prepared via different fabrication processes, including solution and vapour phase deposition techniques. Arguably, our work provides the first accurate evaluation of the long-range lateral charge carrier mobility in lead halide perovskite films, with charge carrier density in the range typically achieved under photovoltaic operation.
More details from the publisher
Details from ORA
More details

Publisher Correction: High irradiance performance of metal halide perovskites for concentrator photovoltaics

Nature Energy Springer Nature America, Inc (2018)

Authors:

Z Wang, Q Lin, B Wenger, Mark Christoforo, Y-H Lin, MT Klug, MICHAEL Johnston, LAURA Herz, HJ Snaith

Abstract:

© 2018, Springer Nature Limited. When this Article was originally published, an old version of the associated Supplementary Information file was uploaded. This has now been replaced.
More details from the publisher
More details
More details

The Impact of Molecular p‐Doping on Charge Transport in High‐Mobility Small‐Molecule/Polymer Blend Organic Transistors

Advanced Electronic Materials Wiley 4:10 (2018)

Authors:

Alexandra F Paterson, Yen‐Hung Lin, Alexander D Mottram, Zhuping Fei, Muhammad R Niazi, Ahmad R Kirmani, Aram Amassian, Olga Solomeshch, Nir Tessler, Martin Heeney, Thomas D Anthopoulos
More details from the publisher
More details

High irradiance performance of metal halide perovskites for concentrator photovoltaics

Nature Energy Nature Publishing Group 3 (2018) 855-861

Authors:

Zhiping Wang, Qianqian Lin, Bernard Wenger, Mark Greyson Christoforo, Yen-Hung Lin, Matthew T Klug, Michael B Johnston, Laura M Herz, Henry J Snaith

Abstract:

Traditionally, III–V multi-junction cells have been used in concentrator photovoltaic (CPV) applications, which deliver extremely high efficiencies but have failed to compete with ‘flat-plate’ silicon technologies owing to cost. Here, we assess the feasibility of using metal halide perovskites for CPVs, and we evaluate their device performance and stability under concentrated light. Under simulated sunlight, we achieve a peak efficiency of 23.6% under 14 Suns (that is, 14 times the standard solar irradiance), as compared to 21.1% under 1 Sun, and measure 1.26 V open-circuit voltage under 53 Suns, for a material with a bandgap of 1.63 eV. Importantly, our encapsulated devices maintain over 90% of their original efficiency after 150 h aging under 10 Suns at maximum power point. Our work reveals the potential of perovskite CPVs, and may lead to new PV deployment strategies combining perovskites with low-concentration factor and lower-accuracy solar tracking systems.
More details from the publisher
Details from ORA
More details

p‐Doping of Copper(I) Thiocyanate (CuSCN) Hole‐Transport Layers for High‐Performance Transistors and Organic Solar Cells

Advanced Functional Materials Wiley 28:31 (2018)

Authors:

Nilushi Wijeyasinghe, Flurin Eisner, Leonidas Tsetseris, Yen‐Hung Lin, Akmaral Seitkhan, Jinhua Li, Feng Yan, Olga Solomeshch, Nir Tessler, Panos Patsalas, Thomas D Anthopoulos
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Current page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet