High Speed Ultraviolet Phototransistors Based on an Ambipolar Fullerene Derivative.
ACS applied materials & interfaces 10:12 (2018) 10202-10210
Abstract:
Combining high charge carrier mobility with ambipolar transport in light-absorbing organic semiconductors is highly desirable as it leads to enhanced charge photogeneration, and hence improved performance, in various optoelectronic devices including solar cells and photodetectors. Here we report the development of [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM)-based ultraviolet (UV) phototransistors with balanced electron and hole transport characteristics. The latter is achieved by fine-tuning the source-drain electrode work function using a self-assembled monolayer. Opto/electrical characterization of as-prepared ambipolar PC61BM phototransistors reveals promising photoresponse, particularly in the UV-A region (315-400 nm), with a maximum photosensitivity and responsivity of 9 × 103 and 3 × 103 A/W, respectively. Finally, the temporal response of the PC61BM phototransistors is found to be high despite the long channel length (10 s of μm) with typical switching times of <2 ms.High-efficiency fullerene solar cells enabled by a spontaneously formed mesostructured CuSCN-nanowire heterointerface
Advanced Science Wiley 5:4 (2018) 1700980
Abstract:
Fullerenes and their derivatives are widely used as electron acceptors in bulk-heterojunction organic solar cells as they combine high electron mobility with good solubility and miscibility with relevant semiconducting polymers. However, studies on the use of fullerenes as the sole photogeneration and charge-carrier material are scarce. Here, a new type of solution-processed small-molecule solar cell based on the two most commonly used methanofullerenes, namely [6,6]-phenyl-C61-butyric acid methyl ester (PC 60 BM) and [6,6]-phenyl-C71-butyric acid methyl ester (PC 70 BM), as the light absorbing materials, is reported. First, it is shown that both fullerene derivatives exhibit excellent ambipolar charge transport with balanced hole and electron mobilities. When the two derivatives are spin-coated over the wide bandgap p-type semiconductor copper (I) thiocyanate (CuSCN), cells with power conversion efficiency (PCE) of ≈1%, are obtained. Blending the CuSCN with PC 70 BM is shown to increase the performance further yielding cells with an open-circuit voltage of ≈0.93 V and a PCE of 5.4%. Microstructural analysis reveals that the key to this success is the spontaneous formation of a unique mesostructured p-n-like heterointerface between CuSCN and PC 70 BM. The findings pave the way to an exciting new class of single photoactive material based solar cells.Metal-Halide Perovskite Transistors for Printed Electronics: Challenges and Opportunities.
Advanced materials (Deerfield Beach, Fla.) 29:46 (2017)
Abstract:
Following the unprecedented rise in photovoltaic power conversion efficiencies during the past five years, metal-halide perovskites (MHPs) have emerged as a new and highly promising class of solar-energy materials. Their extraordinary electrical and optical properties combined with the abundance of the raw materials, the simplicity of synthetic routes, and processing versatility make MHPs ideal for cost-efficient, large-volume manufacturing of a plethora of optoelectronic devices that span far beyond photovoltaics. Herein looks beyond current applications in the field of energy, to the area of large-area electronics using MHPs as the semiconductor material. A comprehensive overview of the relevant fundamental material properties of MHPs, including crystal structure, electronic states, and charge transport, is provided first. Thereafter, recent demonstrations of MHP-based thin-film transistors and their application in logic circuits, as well as bi-functional devices such as light-sensing and light-emitting transistors, are discussed. Finally, the challenges and opportunities in the area of MHPs-based electronics, with particular emphasis on manufacturing, stability, and health and environmental concerns, are highlighted.Copper(I) Thiocyanate (CuSCN) Hole‐Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thin‐Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells
Advanced Functional Materials Wiley 27:35 (2017)
Modulation-Doped In2 O3 /ZnO Heterojunction Transistors Processed from Solution.
Advanced materials (Deerfield Beach, Fla.) 29:19 (2017)