Characterising DNA T-motifs by Simulation and Experiment

(2020)

Authors:

Behnam Najafi, Katherine G Young, Jonathan Bath, Ard A Louis, Jonathan PK Doye, Andrew J Turberfield

Design of hidden thermodynamic driving for non-equilibrium systems via mismatch elimination during DNA strand displacement

Nature Communications Springer Nature 11 (2020) 2562

Authors:

Natalie EC Haley, Thomas E Ouldridge, Ismael Mullor Ruiz, Alessandro Geraldini, Adriaan Louis, Jonathan Bath, Andrew J Turberfield

Abstract:

Recent years have seen great advances in the development of synthetic self-assembling molecular systems. Designing out-of-equilibrium architectures, however, requires a more subtle control over the thermodynamics and kinetics of reactions. We propose a mechanism for enhancing the thermodynamic drive of DNA strand-displacement reactions whilst barely perturbing forward reaction rates: the introduction of mismatches within the initial duplex. Through a combination of experiment and simulation, we demonstrate that displacement rates are strongly sensitive to mismatch location and can be tuned by rational design. By placing mismatches away from duplex ends, the thermodynamic drive for a strand-displacement reaction can be varied without significantly affecting the forward reaction rate. This hidden thermodynamic driving motif is ideal for the engineering of non-equilibrium systems that rely on catalytic control and must be robust to leak reactions.

Spin crossovers and superdiffusion in the one-dimensional Hubbard model

(2020)

Authors:

Michele Fava, Brayden Ware, Sarang Gopalakrishnan, Romain Vasseur, SA Parameswaran

Twisted bilayer graphene in a parallel magnetic field

Physical review B: Condensed matter and materials physics American Physical Society 101 (2020) 205116

Authors:

Yves Hon Kwan, Siddharth Ashok Parameswaran, Shivaji Sondhi

Abstract:

We study the effect of an in-plane magnetic field on the non-interacting dispersion of twisted bilayer graphene. Our analysis is rooted in the chirally symmetric continuum model, whose zero-field band structure hosts exactly flat bands and large energy gaps at the magic angles. At the first magic angle, the central bands respond to a parallel field by forming a quadratic band crossing point (QBCP) at the moire Brillouin zone center. Over a large ´ range of fields, the dispersion is invariant with an overall scale set by the magnetic field strength. For deviations from the magic angle and for realistic interlayer couplings, the motion and merging of the Dirac points lying near charge neutrality are discussed in the context of the symmetries, and we show that small magnetic fields are able to induce a qualitative change in the energy spectrum. We conclude with a discussion on the possible ramifications of our study to the interacting ground states of twisted bilayer graphene systems.

Finite temperature and quench dynamics in the Transverse Field Ising Model from form factor expansions

(2020)

Authors:

Etienne Granet, Maurizio Fagotti, Fabian HL Essler