Dynamics and transport at the threshold of many-body localization
Physics Reports Elsevier 862 (2020) 1-62
Abstract:
Many-body localization (MBL) describes a class of systems that do not approach thermal equilibrium under their intrinsic dynamics; MBL and conventional thermalizing systems form distinct dynamical phases of matter, separated by a phase transition at which equilibrium statistical mechanics breaks down. True many-body localization is known to occur only under certain stringent conditions for perfectly isolated one-dimensional systems, with Hamiltonians that have strictly short-range interactions and lack any continuous non-Abelian symmetries. However, in practice, even systems that are not strictly MBL can be nearly MBL, with equilibration rates that are far slower than their other intrinsic timescales; thus, anomalously slow relaxation occurs in a much broader class of systems than strict localization. In this review we address transport and dynamics in such nearly-MBL systems from a unified perspective. Our discussion covers various classes of such systems: (i) disordered and quasiperiodic systems on the thermal side of the MBL-thermal transition; (ii) systems that are strongly disordered, but obstructed from localizing because of symmetry, interaction range, or dimensionality; (iii) multiple-component systems, in which some components would in isolation be MBL but others are not; and finally (iv) driven systems whose dynamics lead to exponentially slow rates of heating to infinite temperature. A theme common to many of these problems is that they can be understood in terms of approximately localized degrees of freedom coupled to a heat bath (or baths) consisting of thermal degrees of freedom; however, this putative bath is itself nontrivial, being either small or very slowly relaxing. We discuss anomalous transport, diverging relaxation times, and other signatures of the proximity to MBL in these systems. We also survey recent theoretical and numerical methods that have been applied to study dynamics on either side of the MBL transition.Glide symmetry breaking and Ising criticality in the quasi-1D magnet CoNb$_2$O$_6$
(2020)
Mesoscale modelling of polymer aggregate digestion
Current Research in Food Science Elsevier 3:November 2020 (2020) 122-133
Abstract:
We use mesoscale simulations to gain insight into the digestion of biopolymers by studying the break-up dynamics of polymer aggregates (boluses) bound by physical cross-links. We investigate aggregate evolution, establishing that the linking bead fraction and the interaction energy are the main parameters controlling stability with respect to diffusion. We show via a simplified model that chemical breakdown of the constituent molecules causes aggregates that would otherwise be stable to disperse. We further investigate breakdown of biopolymer aggregates in the presence of fluid flow. Shear flow in the absence of chemical breakdown induces three different regimes depending on the flow Weissenberg number (). i) At , shear flow has a negligible effect on the aggregates. ii) At , the aggregates behave approximately as solid bodies and move and rotate with the flow. iii) At , the energy input due to shear overcomes the attractive cross-linking interactions and the boluses are broken up. Finally, we study bolus evolution under the combined action of shear flow and chemical breakdown, demonstrating a synergistic effect between the two at high reaction rates.Exact Phoretic Interaction of Two Chemically Active Particles.
Physical review letters 124:16 (2020) 168003
Abstract:
We study the nonequilibrium interaction of two isotropic chemically active particles taking into account the exact near-field chemical interactions as well as hydrodynamic interactions. We identify regions in the parameter space wherein the dynamical system describing the two particles can have a fixed point-a phenomenon that cannot be captured under the far-field approximation. We find that, due to near-field effects, the particles may reach a stable equilibrium at a nonzero gap size or make a complex that can dissociate in the presence of sufficiently strong noise. We explicitly show that the near-field effects originate from a self-generated neighbor-reflected chemical gradient, similar to interactions of a self-propelling phoretic particle and a flat substrate.Finite temperature and quench dynamics in the Transverse Field Ising Model from form factor expansions
(2020)