Social Cooperativity of Bacteria during Reversible Surface Attachment in Young Biofilms: a Quantitative Comparison of Pseudomonas aeruginosa PA14 and PAO1.
mBio 11:1 (2020) e02644-e02619
Abstract:
What are bacteria doing during "reversible attachment," the period of transient surface attachment when they initially engage a surface, besides attaching themselves to the surface? Can an attaching cell help any other cell attach? If so, does it help all cells or employ a more selective strategy to help either nearby cells (spatial neighbors) or its progeny (temporal neighbors)? Using community tracking methods at the single-cell resolution, we suggest answers to these questions based on how reversible attachment progresses during surface sensing for Pseudomonas aeruginosa strains PAO1 and PA14. Although PAO1 and PA14 exhibit similar trends of surface cell population increase, they show unanticipated differences when cells are considered at the lineage level and interpreted using the quantitative framework of an exactly solvable stochastic model. Reversible attachment comprises two regimes of behavior, processive and nonprocessive, corresponding to whether cells of the lineage stay on the surface long enough to divide, or not, before detaching. Stark differences between PAO1 and PA14 in the processive regime of reversible attachment suggest the existence of two surface colonization strategies. PAO1 lineages commit quickly to a surface compared to PA14 lineages, with early c-di-GMP-mediated exopolysaccharide (EPS) production that can facilitate the attachment of neighbors. PA14 lineages modulate their motility via cyclic AMP (cAMP) and retain memory of the surface so that their progeny are primed for improved subsequent surface attachment. Based on the findings of previous studies, we propose that the differences between PAO1 and PA14 are potentially rooted in downstream differences between Wsp-based and Pil-Chp-based surface-sensing systems, respectively.IMPORTANCE The initial pivotal phase of bacterial biofilm formation known as reversible attachment, where cells undergo a period of transient surface attachment, is at once universal and poorly understood. What is more, although we know that reversible attachment culminates ultimately in irreversible attachment, it is not clear how reversible attachment progresses phenotypically, as bacterial surface-sensing circuits fundamentally alter cellular behavior. We analyze diverse observed bacterial behavior one family at a time (defined as a full lineage of cells related to one another by division) using a unifying stochastic model and show that our findings lead to insights on the time evolution of reversible attachment and the social cooperative dimension of surface attachment in PAO1 and PA14 strains.Active nematics with anisotropic friction: the decisive role of the flow aligning parameter.
Soft matter (2020)
Abstract:
We use continuum simulations to study the impact of anisotropic hydrodynamic friction on the emergent flows of active nematics. We show that, depending on whether the active particles align with or tumble in their collectively self-induced flows, anisotropic friction can result in markedly different patterns of motion. In a flow-aligning regime and at high anisotropic friction, the otherwise chaotic flows are streamlined into flow lanes with alternating directions, reproducing the experimental laning state that has been obtained by interfacing microtubule-motor protein mixtures with smectic liquid crystals. Within a flow-tumbling regime, however, we find that no such laning state is possible. Instead, the synergistic effects of friction anisotropy and flow tumbling can lead to the emergence of bound pairs of topological defects that align at an angle to the easy flow direction and navigate together throughout the domain. In addition to confirming the mechanism behind the laning states observed in experiments, our findings emphasise the role of the flow aligning parameter in the dynamics of active nematics.'Unhinging' the surfaces of higher-order topological insulators and superconductors
Physical Review Letters American Physical Society 124 (2020) 046801
How order melts after quantum quenches
PHYSICAL REVIEW B 101:4 (2020) 41110
Abstract:
© 2020 American Physical Society. Injecting a sufficiently large energy density into an isolated many-particle system prepared in a state with long-range order will lead to the melting of the order over time. Detailed information about this process can be derived from the quantum mechanical probability distribution of the order parameter. We study this process for the paradigmatic case of the spin-1/2 Heisenberg XXZ chain. We determine the full quantum mechanical distribution function of the staggered subsystem magnetization as a function of time after a quantum quench from the classical Néel state. We establish the existence of an interesting regime at intermediate times that is characterized by a very broad probability distribution. Based on our findings we propose a simple general physical picture of how long-range order melts.Energetics of Pfaffian–anti-Pfaffian domains
Physical review B: Condensed matter and materials physics American Physical Society 101:4 (2020) 041302(R)