“Not- A”, representation symmetry-protected topological, and Potts phases in an S3 -invariant chain

Physical Review B: Condensed Matter and Materials Physics American Physical Society 101:23 (2020) 235108

Authors:

Edward O’Brien, Eric Vernier, Paul Fendley

Abstract:

We analyze in depth an S 3 -invariant nearest-neighbor quantum chain in the region of a U ( 1 ) -invariant self-dual multicritical point. We find four distinct proximate gapped phases. One has three-state Potts order, corresponding to topological order in a parafermionic formulation. Another has “representation” symmetry-protected topological (RSPT) order, while its dual exhibits an unusual “not- A ” order, where the spins prefer to align in two of the three directions. Within each of the four phases, we find a frustration-free point with exact ground state(s). The exact ground states in the not- A phase are product states, each an equal-amplitude sum over all states where one of the three spin states on each site is absent. Their dual, the RSPT ground state, is a matrix product state similar to that of Affleck-Kennedy-Lieb-Tasaki. A field-theory analysis shows that all transition lines are in the universality class of the critical three-state Potts model. They provide a lattice realization of a flow from a free-boson field theory to the Potts conformal field theory.

Wavefunctionology: The Special Structure of Certain Fractional Quantum Hall Wavefunctions

Chapter in Fractional Quantum Hall Effects, World Scientific Publishing (2020) 377-434

Active Inter-cellular Forces in Collective Cell Motility

(2020)

Authors:

Guanming Zhang, Romain Mueller, Amin Doostmohammadi, Julia M Yeomans

Characterising DNA T-motifs by Simulation and Experiment

(2020)

Authors:

Behnam Najafi, Katherine G Young, Jonathan Bath, Ard A Louis, Jonathan PK Doye, Andrew J Turberfield

Design of hidden thermodynamic driving for non-equilibrium systems via mismatch elimination during DNA strand displacement

Nature Communications Springer Nature 11 (2020) 2562

Authors:

Natalie EC Haley, Thomas E Ouldridge, Ismael Mullor Ruiz, Alessandro Geraldini, Adriaan Louis, Jonathan Bath, Andrew J Turberfield

Abstract:

Recent years have seen great advances in the development of synthetic self-assembling molecular systems. Designing out-of-equilibrium architectures, however, requires a more subtle control over the thermodynamics and kinetics of reactions. We propose a mechanism for enhancing the thermodynamic drive of DNA strand-displacement reactions whilst barely perturbing forward reaction rates: the introduction of mismatches within the initial duplex. Through a combination of experiment and simulation, we demonstrate that displacement rates are strongly sensitive to mismatch location and can be tuned by rational design. By placing mismatches away from duplex ends, the thermodynamic drive for a strand-displacement reaction can be varied without significantly affecting the forward reaction rate. This hidden thermodynamic driving motif is ideal for the engineering of non-equilibrium systems that rely on catalytic control and must be robust to leak reactions.