Active nematics with anisotropic friction: the decisive role of the flow aligning parameter.
Soft matter (2020)
Abstract:
We use continuum simulations to study the impact of anisotropic hydrodynamic friction on the emergent flows of active nematics. We show that, depending on whether the active particles align with or tumble in their collectively self-induced flows, anisotropic friction can result in markedly different patterns of motion. In a flow-aligning regime and at high anisotropic friction, the otherwise chaotic flows are streamlined into flow lanes with alternating directions, reproducing the experimental laning state that has been obtained by interfacing microtubule-motor protein mixtures with smectic liquid crystals. Within a flow-tumbling regime, however, we find that no such laning state is possible. Instead, the synergistic effects of friction anisotropy and flow tumbling can lead to the emergence of bound pairs of topological defects that align at an angle to the easy flow direction and navigate together throughout the domain. In addition to confirming the mechanism behind the laning states observed in experiments, our findings emphasise the role of the flow aligning parameter in the dynamics of active nematics.'Unhinging' the surfaces of higher-order topological insulators and superconductors
Physical Review Letters American Physical Society 124 (2020) 046801
How order melts after quantum quenches
PHYSICAL REVIEW B 101:4 (2020) 41110
Abstract:
© 2020 American Physical Society. Injecting a sufficiently large energy density into an isolated many-particle system prepared in a state with long-range order will lead to the melting of the order over time. Detailed information about this process can be derived from the quantum mechanical probability distribution of the order parameter. We study this process for the paradigmatic case of the spin-1/2 Heisenberg XXZ chain. We determine the full quantum mechanical distribution function of the staggered subsystem magnetization as a function of time after a quantum quench from the classical Néel state. We establish the existence of an interesting regime at intermediate times that is characterized by a very broad probability distribution. Based on our findings we propose a simple general physical picture of how long-range order melts.Energetics of Pfaffian–anti-Pfaffian domains
Physical review B: Condensed matter and materials physics American Physical Society 101:4 (2020) 041302(R)
Abstract:
In several recent works it has been proposed that, due to disorder, the experimentally observed ν = 5/2 quantum Hall state could be microscopically composed of domains of Pfaffian order along with domains of anti-Pfaffian order. We numerically examine the energetics required for forming such domains and conclude that for the parameters appropriate for recent experiments, such domains would not occur.Goldstone modes in the emergent gauge fields of a frustrated magnet
PHYSICAL REVIEW B 101:2 (2020) 24413