Phoretic Active Matter

(2019)

Signatures of information scrambling in the dynamics of the entanglement spectrum

Physical review B: Condensed Matter and Materials Physics American Physical Sociey 100 (2019) 125115

Authors:

T Rakovsky, S Gopalakrishnan, Siddharth Ashok Parameswaran, F Pollmann

Abstract:

We examine the time evolution of the entanglement spectrum of a small subsystem of a nonintegrable spin chain following a quench from a product state. We identify signatures in this entanglement spectrum of the distinct dynamical velocities (related to entanglement and operator spreading) that control thermalization. We show that the onset of level repulsion in the entanglement spectrum occurs on different timescales depending on the “entanglement energy”, and that this dependence reflects the shape of the operator front. Level repulsion spreads across the entire entanglement spectrum on a timescale that is parametrically shorter than that for full thermalization of the subsystem. This timescale is also close to when the mutual information between individual spins at the ends of the subsystem reaches its maximum. We provide an analytical understanding of this phenomenon and show supporting numerical data for both random unitary circuits and a microscopic Hamiltonian.

Experimental observation of flow fields around active Janus spheres.

Nature communications 10:1 (2019) 3952

Authors:

Andrew I Campbell, Stephen J Ebbens, Pierre Illien, Ramin Golestanian

Abstract:

The phoretic mechanisms at stake in the propulsion of asymmetric colloids have been the subject of debates during the past years. In particular, the importance of electrokinetic effects on the motility of Pt-PS Janus sphere was recently discussed. Here, we probe the hydrodynamic flow field around a catalytically active colloid using particle tracking velocimetry both in the freely swimming state and when kept stationary with an external force. Our measurements provide information about the fluid velocity in the vicinity of the surface of the colloid, and confirm a mechanism for propulsion that was proposed recently. In addition to offering a unified understanding of the nonequilibrium interfacial transport processes at stake, our results open the way to a thorough description of the hydrodynamic interactions between such active particles and understanding their collective dynamics.

Lazy electrons in graphene.

Proceedings of the National Academy of Sciences of the United States of America 116:37 (2019) 18316-18321

Authors:

Vaibhav Mohanty, Eric J Heller

Abstract:

Within a tight-binding approximation, we numerically determine the time evolution of graphene electronic states in the presence of classically vibrating nuclei. There is no reliance on the Born-Oppenheimer approximation within the p-orbital tight-binding basis, although our approximation is "atomically adiabatic": the basis p-orbitals are taken to follow nuclear positions. Our calculations show that the strict adiabatic Born-Oppenheimer approximation fails badly. We find that a diabatic (lazy electrons responding weakly to nuclear distortions) Born-Oppenheimer model provides a much more accurate picture and suggests a generalized many-body Bloch orbital-nuclear basis set for describing electron-phonon interactions in graphene.

Active matter invasion.

Soft matter (2019)

Authors:

Felix Kempf, Romain Mueller, Erwin Frey, Julia M Yeomans, Amin Doostmohammadi

Abstract:

Biologically active materials such as bacterial biofilms and eukaryotic cells thrive in confined micro-spaces. Here, we show through numerical simulations that confinement can serve as a mechanical guidance to achieve distinct modes of collective invasion when combined with growth dynamics and the intrinsic activity of biological materials. We assess the dynamics of the growing interface and classify these collective modes of invasion based on the activity of the constituent particles of the growing matter. While at small and moderate activities the active material grows as a coherent unit, we find that blobs of active material collectively detach from the cohort above a well-defined activity threshold. We further characterise the mechanical mechanisms underlying the crossovers between different modes of invasion and quantify their impact on the overall invasion speed.