From single-particle excitations to sound waves in a box-trapped atomic Bose-Einstein condensate
Physical Review A American Physical Society 99 (2019) 021601(R)
Abstract:
We experimentally and theoretically investigate the lowest-lying axial excitation of an atomic Bose-Einstein condensate in a cylindrical box trap. By tuning the atomic density, we observe how the nature of the mode changes from a single-particle excitation (in the low-density limit) to a sound wave (in the high-density limit). We elucidate the physics of the crossover between the two limiting regimes using Bogoliubov theory, and find excellent agreement with the measurements. Finally, for large excitation amplitudes we observe a non-exponential decay of the mode, suggesting a nonlinear many-body decay mechanism.Emergence of Active Nematic Behavior in Monolayers of Isotropic Cells.
Physical review letters 122:4 (2019) 048004-048004
Abstract:
There is now growing evidence of the emergence and biological functionality of liquid crystal features, including nematic order and topological defects, in cellular tissues. However, how such features that intrinsically rely on particle elongation emerge in monolayers of cells with isotropic shapes is an outstanding question. In this Letter, we present a minimal model of cellular monolayers based on cell deformation and force transmission at the cell-cell interface that explains the formation of topological defects and captures the flow-field and stress patterns around them. By including mechanical properties at the individual cell level, we further show that the instability that drives the formation of topological defects, and leads to active turbulence, emerges from a feedback between shape deformation and active driving. The model allows us to suggest new explanations for experimental observations in tissue mechanics, and to propose designs for future experiments.Topological states in chiral active matter: Dynamic blue phases and active half-skyrmions.
The Journal of chemical physics 150:6 (2019) 064909-064909
Abstract:
We numerically study the dynamics of two-dimensional blue phases in active chiral liquid crystals. We show that introducing contractile activity results in stabilised blue phases, while small extensile activity generates ordered but dynamic blue phases characterised by coherently moving half-skyrmions and disclinations. Increasing extensile activity above a threshold leads to the dissociation of the half-skyrmions and active turbulence. We further analyse isolated active half-skyrmions in an isotropic background and compare the activity-induced velocity fields in simulations to an analytical prediction of the flow. Finally, we show that confining an active blue phase can give rise to a system-wide circulation, in which half-skyrmions and disclinations rotate together.NMR relaxation in Ising spin chains
Physical Review B: Condensed Matter and Materials Physics American Physical Society 99 (2019) 035156