Plectoneme tip bubbles : coupled denaturation and writhing in supercoiled DNA
Scientific Reports Nature Publishing Group 5 (2015) 7655
Abstract:
We predict a novel conformational regime for DNA, where denaturation bubbles form at the tips of plectonemes, and study its properties using coarse-grained simulations. For negative supercoiling, this regime lies between bubble-dominated and plectoneme-dominated phases, and explains the broad transition between the two observed in experiment. Tip bubbles cause localisation of plectonemes within thermodynamically weaker AT-rich sequences, and can greatly suppress plectoneme diffusion by a pinning mechanism. They occur for supercoiling densities and forces that are typically encountered for DNA in vivo, and may be exploited for biological control of genomic processes.Topological Paramagnetism in Frustrated Spin-One Mott Insulators
(2015)
Coarse-grained modelling of supercoiled RNA
Journal of Chemical Physics American Institute of Physics 143:24 (2015) 243122
Abstract:
We study the behaviour of double-stranded RNA under twist and tension using oxRNA, a recently developed coarse-grained model of RNA. Introducing explicit salt-dependence into the model allows us to directly compare our results to data from recent single-molecule experiments. The model reproduces extension curves as a function of twist and stretching force, including the buckling transition and the behaviour of plectoneme structures. For negative supercoiling, we predict denaturation bubble formation in plectoneme end-loops, suggesting preferential plectoneme localisation in weak base sequences. OxRNA exhibits a positive twist-stretch coupling constant, in agreement with recent experimental observations.Thermal analog of gimbal lock in a colloidal ferromagnetic Janus rod
Physical Review Letters American Physical Society 115:24 (2015) 248301
Abstract:
We report an entropy-driven orientational hopping transition in a magnetically confined colloidal Janus rod. In a magnetic field, the sedimented rod randomly hops between horizontal and vertical states: the latter state comes at a substantial gravitational cost at no reduction of magnetic potential energy. The probability distribution over the angles of the rod shows that the presence of an external magnetic field leads to the emergence of a metastable vertical state separated from the ground state by an effective barrier. This barrier does not come from the potential energy but rather from the vast gain in phase space available to the rod as it approaches the vertical state. The loss of rotational degree of freedom that gives rise to this effect is a statistical mechanical analogue of the phenomenon of gimbal lock from classical mechanics.Understanding the damage of polymer matrix composites by integrating chemical, morphological and mechanical properties
Proceedings of the American Society for Composites - 30th Technical Conference, ACS 2015 (2015)