Hydrodynamic Interactions at Low Reynolds Number
Experimental Mechanics 50:9 (2010) 1283-1292
Abstract:
We consider the hydrodynamic interactions of low Reynolds number microswimmers, presenting a review of recent work based upon models of linked sphere swimmers. Particular attention is paid to those aspects that are generic, applicable to all microswimmers and not only to the simple models considered. The importance of the relative phase in swimmer-swimmer interactions is emphasised, as is the role of simple symmetry arguments in both understanding and constraining the hydrodynamic properties of microswimmers. © 2010 Society for Experimental Mechanics.Space-time geometry of topological phases
Annals of Physics 325:11 (2010) 2550-2593
Abstract:
The 2 + 1 dimensional lattice models of Levin and Wen (2005) [1] provide the most general known microscopic construction of topological phases of matter. Based heavily on the mathematical structure of category theory, many of the special properties of these models are not obvious. In the current paper, we present a geometrical space-time picture of the partition function of the Levin-Wen models which can be described as doubles (two copies with opposite chiralities) of underlying anyon theories. Our space-time picture describes the partition function as a knot invariant of a complicated link, where both the lattice variables of the microscopic Levin-Wen model and the terms of the Hamiltonian are represented as labeled strings of this link. This complicated link, previously studied in the mathematical literature, and known as Chain-Mail, can be related directly to known topological invariants of 3-manifolds such as the so-called Turaev-Viro invariant and the Witten-Reshitikhin-Turaev invariant. We further consider quasi-particle excitations of the Levin-Wen models and we see how they can be understood by adding additional strings to the Chain-Mail link representing quasi-particle world-lines. Our construction gives particularly important new insight into how a doubled theory arises from these microscopic models. © 2010 Elsevier Inc.Blue phases as templates for 3D colloidal photonic crystals
Proceedings of SPIE - The International Society for Optical Engineering 7775 (2010)